Mastering Space Group Tables for Electron Diffraction Pattern Indexing

Xiaobing Hu

The NUANCE Center, Northwestern University

Department of Materials Sciences and Engineering, Northwestern University

February 19, 2025

Contact Information: Email: <u>xbhu@northwestern.edu</u> Office: Tech Building Ground Floor JG14 Phone: 847-467-4992

Outline

>Index of electron diffraction patterns

>Introduction of lattice, point and space group

> Contribution of diffraction intensity from unit cell

How to use space group table?

✓ Index of electron diffraction patterns

Things to be considered when indexing the reflections

- Planar distance match targeted phase
- Lattice extinction rules
- Indexed plane (hkl) must within the zone-axis [uvw]
 h*u + k*v + l*w=0
- Intersection angle between two planes within an individual zone-axis matches

$(h_1k_1l_1) (h_2k_2l_2)$

Intersection angles between two zone-axis matches

Along $[u_1v_1w_1]$ direction: read tilting angle X_1, Y_1 from microscope;

Along $[u_2v_2w_2]$ direction: read tilting angle X₂, Y₂ from microscope;

Experimental measured intersection angle $\boldsymbol{\theta} \textbf{:}$

 $\cos \theta = \cos(x_1 - x_2)^* \cos(y_1 - y_2)$

Northwestern

Hu, et al, Acta Materialia 68 (2014) 70-81

✓ Introduction of lattice, point and space group

Solid state matter has three state:

- Crystal structure (having translational periodicity)
- Quasi-crystal structure (no translation periodicity)
- Amorphous (only short-range order)

https://home.iitk.ac.in/~sangals/crystosim/crystaltut.html

Northwestern EXPLORING INNER SPACE Symmetry operations in space groups for crystallography

• Macroscopic Symmetry

Basic operation:

Nanoscale Characterization Experimental C

Rotation----L1, L2, L3, L4, L6; Reflection----m Inversion---- $\overline{1}$ **Combined operation:** Rotoinversion = Rotation + Inversion $\overline{4}, \overline{6}$

 Microscopic Symmetry (Macroscopic Symmetry + partial glide)

Glide reflection = Reflection + partial translation **a**, **b**, **c**, **n**, **d**

Screw rotation = Rotation + partial translation

Screw axis: 2_1 , 3_1 , 3_2 , 4_1 , 4_2 , 4_3 , 6_1 , 6_2 , 6_3 , 6_4 , 6_5

Symmetry planes and their symbols

¹ "a, b, c" lengths of the unit.

Glide planes: A combination of a reflection and a translation parallel to the reflection plane. The translational component can be half of the translation unit (planes a, b, c, n, e) or a quarter (planes d), always in a parallel direction to the plane.

Miras, et al, Education Sciences 12 (2022) 85

Northwestern EXPLORING INNER SPACE

Schematic of screw axis operation

Schematic of screw axis operation

Mathematical descriptions of operation elements

Operation matrix $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = W^* \begin{pmatrix} x \\ y \\ z \end{pmatrix} + t$ Translation vector Post-operation Original location

For a 6₁ screw-axis along [001] direction

 $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{bmatrix} 1 & \overline{1} & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \frac{1}{6} \end{pmatrix}$

For the n glide plane (110) plane

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{bmatrix} 0 & \overline{1} & 0 \\ \overline{1} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} x \\ y \\ z \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$$

For 2-fold ration axis [100] direction $W = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ For 2-fold ration axis [010] direction $W = \begin{bmatrix} \overline{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

For a position operated by two continuous 2-fold ration [100] and [010] direction

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \overline{1} & 0 \\ 0 & 0 & \overline{1} \end{bmatrix} * \begin{bmatrix} \overline{1} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \overline{1} \end{bmatrix} * \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

This is a 2-fold ration
axis [001] direction
$$= \begin{bmatrix} \overline{1} & 0 & 0 \\ 0 & \overline{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

32 Point group (plane group; without consideration of translation)

Table 2.1.2.1. Crystal families, crystal systems, conventional coordinate systems and Bravais lattices in one, two and three dimensions

				No. of	Conventional coordinate system		
Crystal family	Symbol*	Crystal system	Crystallographic point groups†	space groups	Restrictions on cell parameters	Parameters to be determined	Bravais lattices*
One dimension	-						
-	-	-	1, <u>m</u>	2	None	a	p
Two dimensions					1	1	
Oblique (monoclinic)	m	Oblique	1, 2	2	None	a, b $\gamma \ddagger$	тр
Rectangular (orthorhombic)	0	Rectangular	<i>m</i> , 2 <i>mm</i>	7	$\gamma = 90^{\circ}$	a, b	op oc
Square (tetragonal)	t	Square	[4], [4 <i>mm</i>]	3	$ \begin{array}{c} a = b \\ \gamma = 90^{\circ} \end{array} $	a	tp
Hexagonal	h	Hexagonal	3, 6 3 <i>m</i> , 6 <i>mm</i>	5	$\begin{array}{l} a = b \\ \gamma = 120^{\circ} \end{array}$	a	hp
Three dimensions		1			+	•	
Triclinic (anorthic)	a	Triclinic	1, 1	2	None	$a, b, c, \\ \alpha, \beta, \gamma$	aP
Monoclinic	m	Monoclinic	2, <i>m</i> , 2/ <i>m</i>	13	<i>b</i> -unique setting $\alpha = \gamma = 90^{\circ}$	a, b, c $\beta \ddagger$	mP mS (mC, mA, mI
					c-unique setting $\alpha = \beta = 90^{\circ}$	a, b, c, γ ‡	mP mS (mA, mB, mI)
Orthorhombic	0	Orthorhombic	222, mm2, <u>mmm</u>	59	$\alpha=\beta=\gamma=90^\circ$	a, b, c	oP oS (oC, oA, oB) oI oF
Tetragonal	t	Tetragonal	$\begin{array}{c} 4, \overline{4}, \ \underline{4/m} \\ 422, 4mm, \overline{4}2m, \\ \hline 4/mmm \end{array}$	68	$ \begin{array}{c} a=b\\ \alpha=\beta=\gamma=90^\circ \end{array} $	a, c	tP tI
Hexagonal	h	Trigonal	3, <u>3</u> 32, 3 <i>m</i> , <u>3</u> <i>m</i>	18	$ \begin{array}{c} a=b\\ \alpha=\beta=90^\circ, \ \gamma=120^\circ \end{array} $	<i>a</i> , <i>c</i>	hP
				7	a = b = c $\alpha = \beta = \gamma$ (rhombohedral axes, primitive cell)	α, α	hR
					$ \begin{array}{l} a = b \\ \alpha = \beta = 90^\circ, \gamma = 120^\circ \\ (\text{hexagonal axes,} \\ \text{triple obverse cell}) \end{array} $		
		Hexagonal	$6, \overline{6}, \overline{6/m}$ $622, 6mm, \overline{6}2m,$ $\overline{6/mmm}$	27	$ \begin{array}{c} a=b \\ \alpha=\beta=90^\circ, \gamma=120^\circ \end{array} $	a, c	hP
Cubic	с	Cubic	23, $m\overline{3}$ 432, $\overline{43m}$, $m\overline{3m}$	36	$ \begin{array}{c} a=b=c\\ \alpha=\beta=\gamma=90^{\circ} \end{array} $	а	cP cI cF

NUANCE

Northwestern University Atomic and

Nanoscale Characterization Experimental Center

 $\checkmark\,$ Contribution of diffraction intensity from unit cell

Scattering amplitude from **unit cell** can be described as :

$$A_{cell} = \frac{e^{2\pi i k r}}{r} \sum f_i(\theta) e^{2\pi i K \cdot R_i}$$

 $\frac{f(\theta): \text{atomic scattering factor}}{r}: \text{descripting the scattered wave}$

 R_i is the vector which defines the location of each atom within the unit cell.

 $R_i = x_i^* a + y_i^* b + z_i^* c$

K is the diffraction vector of unit, where K=g atom within the unit cell.

 F_{hkl} : structure factor of unit cell

 $F_{hkl} = \sum f_i(\theta) e^{2\pi i (hx_i + ky_i + lz_i)}$

- applies whether there is one atom or one hundred atoms in the unit cell
- no matter where they are located, and it applies to all crystal lattices

Diffraction pattern intensity $I \propto A_{cell}^2 \propto F_{hkl}^2$

 $g = h^* a^* + y_i^* b^* + z_i^* c^*$

F_{hkl} : structure factor of unit cell

 $F_{hkl} = \sum f_i(\theta) e^{2\pi i (hx_i + ky_i + lz_i)}$

For FCC lattice

$$\begin{split} F_{hkl} &= \sum f_i(\theta) e^{2\pi \mathrm{i}(hx_i + ky_i + lz_i)} \\ &= \mathrm{f} \Big\{ 1 + e^{\pi \mathrm{i}(h+k)} + e^{\pi \mathrm{i}(h+l)} + e^{\pi \mathrm{i}(k+l)} \Big\} \end{split}$$

• If h, k, l are all even or odd integers $F_{hkl} = f\{1 + e^{2\pi i} + e^{2\pi i} + e^{2\pi i}\}=4f$ • If h, k, l are in mixed even and odd integers $F_{hkl} = f\{1 + 2e^{\pi i} + e^{2\pi i}\}=0$

For FCC lattice, only lattice plane {h, k, l} existing rule: (h, k, l) must be all even or odd integers

$$e^{\theta i} = \cos \theta + i \sin \theta$$

$$e^{\pi i} = \cos \pi + i \sin \pi = -1$$

$$e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1$$

0:

Schematic of FCC lattice

FCC lattice: Space group $Fm\overline{3}m$, group number 225 Atom locations:

$$(x, y, z) = (0,0,0), (0,\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0,\frac{1}{2})$$

For FCC lattice, only lattice plane {h, k, l} existing rule: (h, k, l) must be all even or odd integers

Posi Multi	tion plicit	s y,		Coordi	nates				Reflection conditions
Wyck Site s	off le ymm	etter, etry	(0,0,0)+	$(0, \tfrac{1}{2}, \tfrac{1}{2}) +$	$({\scriptstyle\frac{1}{2}},0,{\scriptstyle\frac{1}{2}})+$	$\left(\tfrac{1}{2}, \tfrac{1}{2}, 0 \right) +$	>		<i>h</i> , <i>k</i> , <i>l</i> permutable General:
192	l	1	$ \begin{array}{c} (1) \ x, y, z \\ (5) \ z, x, y \\ (9) \ y, z, x \\ (13) \ y, x, \bar{z} \\ (17) \ x, z, \bar{y} \\ (21) \ z, y, \bar{x} \\ (25) \ \bar{x}, \bar{y}, \bar{z} \\ (29) \ \bar{z}, \bar{x}, \bar{y} \\ (33) \ \bar{y}, \bar{z}, \bar{x} \\ (41) \ \bar{x}, \bar{z}, y \\ (45) \ \bar{z}, \bar{y}, x \end{array} $	$\begin{array}{c} (2) \ \bar{x}, \bar{y}, z \\ (5) \ z, \bar{x}, \bar{y} \\ (6) \ z, \bar{x}, \bar{y} \\ (6) \ z, \bar{x}, \bar{y} \\ (10) \ \bar{y}, z, \bar{x} \\ (14) \ \bar{y}, \bar{z}, \bar{z} \\ (18) \ \bar{x}, z, y \\ (22) \ z, \bar{y}, x \\ (26) \ x, y, \bar{z} \\ (30) \ \bar{z}, x, y \\ (34) \ y, \bar{z}, x \\ (38) \ y, x, z \\ (42) \ x, \bar{z}, \bar{y} \\ (46) \ \bar{z}, y, \bar{x} \end{array}$	(3) (7) (11) (15) (19) (23) (27) (31) (35) (39) (43) (47)	$ar{x}, y, ar{z}$ $ar{z}, ar{x}, y$ $y, ar{z}, ar{x}$ $y, ar{z}, ar{z}$ $ar{x}, ar{z}, ar{y}$ $ar{z}, y, x$ $x, ar{y}, ar{z}$ $z, x, ar{y}$ $ar{y}, x, ar{z}$ $ar{y}, x, ar{z}$ $ar{y}, x, ar{z}$ x, z, y $z, ar{y}, ar{x}$	$ \begin{array}{c} (4) \ x, \bar{y}, \bar{z} \\ (8) \ \bar{z}, x, \bar{y} \\ (12) \ \bar{y}, \bar{z}, x \\ (16) \ \bar{y}, x, z \\ (20) \ x, \bar{z}, y \\ (24) \ \bar{z}, \bar{y}, \bar{x} \\ (28) \ \bar{x}, y, z \\ (32) \ z, \bar{x}, y \\ (36) \ y, z, \bar{x} \\ (40) \ y, \bar{x}, \bar{z} \\ (44) \ \bar{x}, z, \bar{y} \\ (48) \ z, y, x \end{array} $		hkl : h+k,h+l,k+l=2, 0kl : k,l=2n hhl : h+l=2n h00 : h=2n
									Special: as above, plus
96	k	<i>m</i>	$egin{array}{c} x,x,z\ ar{z},ar{x},x\ x\ x,x,ar{z}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{z},ar{x},ar{x}\ ar{x},ar{z},ar{x}\ ar{x},ar{z},ar{x}\ ar{x},ar{z},ar{x}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{x},ar{x}\ ar{x}\ ar{x},ar{x}\ ar{x}\ $	$ar{x},ar{x},z$ $ar{z},x,ar{x}$ $ar{x},ar{x},ar{z}$ $x,ar{z},x$	$ar{x}, x, ar{z}$ x, z, x $x, ar{x}, z$ $z, x, ar{x}$	$egin{array}{c} x,ar x,ar z\ ar x,z,ar x\ ar x,z,ar x\ ar x,x,z\ ar z,ar x,x,z\ z,ar x,x \end{array}$	z, x, x $x, \overline{z}, \overline{x}$ x, z, \overline{x} \overline{z}, x, x	$z, \overline{x}, \overline{x}$ $\overline{x}, \overline{z}, x$ \overline{x}, z, x $\overline{z}, \overline{x}, \overline{x}$	no extra conditions
96	j	<i>m</i>	$\begin{array}{c} 0, y, z \\ \bar{z}, 0, y \\ y, 0, \bar{z} \\ 0, \bar{z}, \bar{y} \end{array}$	$\begin{array}{c} 0, \bar{y}, z \\ \bar{z}, 0, \bar{y} \\ \bar{y}, 0, \bar{z} \\ 0, \bar{z}, y \end{array}$	$0, y, \bar{z}$ y, z, 0 y, 0, z z, y, 0	$0, \bar{y}, \bar{z}$ $\bar{y}, z, 0$ $\bar{y}, 0, z$ $z, \bar{y}, 0$	z, 0, y $y, \bar{z}, 0$ $0, z, \bar{y}$ $\bar{z}, y, 0$	$z, 0, \bar{y}$ $\bar{y}, \bar{z}, 0$ 0, z, y $\bar{z}, \bar{y}, 0$	no extra conditions
48	i	<i>m</i> . <i>m</i> 2	$\frac{\frac{1}{2}, y, y}{\bar{y}, \frac{1}{2}, y}$	${\scriptstyle rac{1}{2},ar{y},y}{\scriptstyle ar{y},{\scriptstyle rac{1}{2},ar{y}}$	$\frac{1}{2}, y, \bar{y}$ $y, y, \frac{1}{2}$	$rac{1}{2},ar{y},ar{y}\ ar{y},y,rac{1}{2}$	$\begin{array}{c} y, \frac{1}{2}, y\\ y, \overline{y}, \frac{1}{2} \end{array}$	$y, \frac{1}{2}, \overline{y}$ $\overline{y}, \overline{y}, \frac{1}{2}$	no extra conditions
48	h	<i>m</i> . <i>m</i> 2	$0, y, y \\ \bar{y}, 0, y$	$\begin{array}{c} 0, \bar{y}, y \\ \bar{y}, 0, \bar{y} \end{array}$	$0, y, \bar{y} \\ y, y, 0$	$\begin{array}{c} 0,ar{y},ar{y}\ ar{y},y,0 \end{array}$	$\begin{array}{c} y, 0, y \\ y, \bar{y}, 0 \end{array}$	$y,0,ar{y}$ $ar{y},ar{y},0$	no extra conditions
48	g	2. <i>mm</i>	$x, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, x, \frac{3}{4}$	$ar{x}, rac{3}{4}, rac{1}{4} \ rac{3}{4}, ar{x}, rac{3}{4}$	$\frac{1}{4}, x, \frac{1}{4}, x, \frac{1}{4}, x, \frac{1}{4}, \frac{1}{4}, \frac{3}{4}$	$\frac{1}{4}, \bar{x}, \frac{3}{4}$ $\bar{x}, \frac{1}{4}, \frac{1}{4}$	$\frac{1}{4}, \frac{1}{4}, x$ $\frac{1}{4}, \frac{1}{4}, \overline{x}$	$\frac{3}{4}, \frac{1}{4}, \overline{x}$ $\frac{1}{4}, \frac{3}{4}, x$	hkl: $h = 2n$
32	f	. 3 m	x, x, x x, x, \overline{x}	$ar{x}, ar{x}, x$ $ar{x}, ar{x}, ar{x}$	$\overline{x}, x, \overline{x}$ x, \overline{x}, x	x, \bar{x}, \bar{x} \bar{x}, x, x			no extra conditions
24	е	4 m . m	x,0,0	$\bar{x},0,0$	0, <i>x</i> ,0	$0, \bar{x}, 0$	0,0,x	$0, 0, \bar{x}$	no extra conditions
24	d	<i>m</i> . <i>m</i> n	$n = 0, \frac{1}{4}, \frac{1}{4}$	$0, \frac{3}{4}, \frac{1}{4}$	$\frac{1}{4}, 0, \frac{1}{4}$	$\frac{1}{4}, 0, \frac{3}{4}$	$\frac{1}{4}, \frac{1}{4}, 0$	$\frac{3}{4}, \frac{1}{4}, 0$	hkl: $h = 2n$
8	с	ā 3 m	$\tfrac{1}{4}, \tfrac{1}{4}, \tfrac{1}{4}$	$\tfrac14, \tfrac14, \tfrac34$					hkl : $h = 2n$
4	b	m 3 m	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$						no extra conditions
4	а	m 3 m	0,0,0						no extra conditions

CONTINUED

 $Fm\bar{3}m$

No. 225

Example II: Ordered FCC lattice (L1₂ type)

F_{hkl} : structure factor of unit cell

 $F_{hkl} = \sum f_i(\theta) e^{2\pi i (hx_i + ky_i + lz_i)}$

For $L1_2$ lattice

$$\begin{split} F_{hkl} &= \sum f_i(\theta) e^{2\pi i (hx_i + ky_i + lz_i)} \\ &= f_{Al} + f_{Ni} * \left\{ e^{\pi i (h+k)} + e^{\pi i (h+l)} + e^{\pi i (k+l)} \right\} \end{split}$$

If h, k, l are all even or odd integers:
F_{hkl} = f_{Al} + f_{Ni} * {e^{2πi} + e^{2πi}} = f_{Al} + 3f_{Ni} → Diffraction patterns with larger intensity
If h, k, l are in mixed even and odd integers:
F_{hkl} = f_{Al} + f_{Ni}{2e^{πi} + e^{2πi}} = f_{Al} - f_{Ni} → Diffraction patterns with reduced intensity

For L1₂ type, all lattice planes existed but with different intensities.

 $e^{\theta i} = \cos \theta + i \sin \theta$ $e^{\pi i} = \cos \pi + i \sin \pi = -1$ $e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1$ Schematic of Ni₃Al lattice

For L1₂ type, all lattice planes existed but with different intensities.

Northwestern University Atomic and

Nanoscale Characterization Experimental Center

Pos Mult Wyc Site	itior tiplici koff l symn	15 ity, letter, netry		Coordina	ites			$\left(\right)$	Reflection conditions <i>h,k,l</i> permutable General:
48	n	1		$\begin{array}{c} (2) \ \bar{x}, \bar{y}, z \\ (6) \ z, \bar{x}, \bar{y} \\ (10) \ \bar{y}, z, \bar{x} \\ (14) \ \bar{y}, \bar{x}, \bar{z} \\ (14) \ \bar{y}, \bar{x}, \bar{z} \\ (22) \ z, \bar{y}, x \\ (22) \ z, \bar{y}, x \\ (30) \ \bar{z}, x, y \\ (30) \ \bar{z}, x, y \\ (30) \ \bar{y}, x, z \\ (38) \ y, x, z \\ (42) \ x, \bar{z}, \bar{y} \\ (46) \ \bar{z}, y, \bar{x} \end{array}$	$\begin{array}{c} (3) \ \bar{x}, \\ (7) \ \bar{z}, \\ (11) \ y, \\ (15) \ y, \\ (15) \ y, \\ (23) \ \bar{z}, \\ (27) \ x, \\ (31) \ z, \\ (35) \ \bar{y}, \\ (39) \ \bar{y}, \\ (43) \ x, \\ (47) \ z, \\ \end{array}$	y, \bar{z} \bar{x}, y \bar{z}, \bar{x} \bar{x}, z \bar{x}, z \bar{y}, x \bar{y}, z \bar{y}, x \bar{y}, z x, \bar{y} z, x z, x z, y \bar{y}, \bar{x}	$ \begin{array}{c} (4) \ x, \bar{y}, \bar{z} \\ (8) \ \bar{z}, x, \bar{y} \\ (12) \ \bar{y}, \bar{z}, x \\ (16) \ \bar{y}, x, z \\ (20) \ x, \bar{z}, y \\ (24) \ \bar{z}, \bar{y}, \bar{x} \\ (28) \ \bar{x}, y, z \\ (32) \ z, \bar{x}, y \\ (32) \ z, \bar{x}, y \\ (44) \ \bar{x}, \bar{z}, \bar{y} \\ (44) \ \bar{x}, z, \bar{y} \\ (48) \ z, y, x \end{array} $		no conditions
									Special: no extra condition
24	т	<i>m</i>	x, x, z $\overline{z}, \overline{x}, x$ x, x, \overline{z} $\overline{x}, \overline{z}, \overline{x}$	$ar{x},ar{x},z$ $ar{z},x,ar{x}$ $ar{x},ar{x},ar{z}$ $x,ar{z},x$	$ar{x}, x, ar{z}$ x, z, x $x, ar{x}, z$ $z, x, ar{x}$	x, \bar{x}, \bar{z} \bar{x}, z, \bar{x} \bar{x}, x, z z, \bar{x}, x	z, x, x $x, \overline{z}, \overline{x}$ x, z, \overline{x} \overline{z}, x, x	$egin{array}{llllllllllllllllllllllllllllllllllll$	
24	l	<i>m</i>	$ \frac{1}{2}, y, z \bar{z}, \frac{1}{2}, y y, \frac{1}{2}, \bar{z} \frac{1}{2}, \bar{z}, \bar{y} $	$ \begin{array}{c} \frac{1}{2}, \bar{y}, z \\ \bar{z}, \frac{1}{2}, \bar{y} \\ \bar{y}, \frac{1}{2}, \bar{z} \\ \frac{1}{2}, \bar{z}, y \end{array} $	$ \frac{\frac{1}{2}, y, \overline{z}}{y, z, \frac{1}{2}} \frac{y, z, \frac{1}{2}}{z, z} \frac{z, y, \frac{1}{2}}{z} $	$egin{array}{c} rac{1}{2},ar{y},ar{z}\ ar{y},ar{z}\ ar{y},z,rac{1}{2}\ ar{y},rac{1}{2},z\ ar{y},rac{1}{2},z\ ar{z},ar{y},rac{1}{2} \end{array}$	$ \begin{array}{c} z, \frac{1}{2}, y \\ y, \bar{z}, \frac{1}{2} \\ \frac{1}{2}, z, \bar{y} \\ \bar{z}, y, \frac{1}{2} \end{array} $	$ \begin{array}{c} z, \frac{1}{2}, \bar{y} \\ \bar{y}, \bar{z}, \frac{1}{2} \\ \frac{1}{2}, z, y \\ \bar{z}, \bar{y}, \frac{1}{2} \end{array} $	
24	k	<i>m</i>	$\begin{array}{c} 0, y, z \\ \bar{z}, 0, y \\ y, 0, \bar{z} \\ 0, \bar{z}, \bar{y} \end{array}$	$\begin{array}{c} 0, \bar{y}, z \\ \bar{z}, 0, \bar{y} \\ \bar{y}, 0, \bar{z} \\ 0, \bar{z}, y \end{array}$	$0, y, \bar{z}$ y, z, 0 y, 0, z z, y, 0	$\begin{array}{c} 0, \bar{y}, \bar{z} \\ \bar{y}, z, 0 \\ \bar{y}, 0, z \\ z, \bar{y}, 0 \end{array}$	z, 0, y $y, \bar{z}, 0$ $0, z, \bar{y}$ $\bar{z}, y, 0$	$z, 0, \bar{y}$ $\bar{y}, \bar{z}, 0$ 0, z, y $\bar{z}, \bar{y}, 0$	
12	j	<i>m</i> . <i>m</i> 2	$\frac{\frac{1}{2}}{\overline{y}}, \frac{y}{\overline{y}}, \frac{y}{\overline{2}}, y$	$\frac{\frac{1}{2},\bar{y},y}{\bar{y},\frac{1}{2},\bar{y}}$	$\frac{1}{2}, y, \overline{y}$ $y, y, \frac{1}{2}$	$rac{1}{2},ar{y},ar{y}\ ar{y},ar{y}$ $ar{y},y,rac{1}{2}$	$\begin{array}{c} y, \frac{1}{2}, y\\ y, \overline{y}, \frac{1}{2} \end{array}$	$y, \frac{1}{2}, \overline{y}$ $\overline{y}, \overline{y}, \frac{1}{2}$	
12	i	<i>m</i> . <i>m</i> 2	$\begin{array}{c} 0, y, y \\ \bar{y}, 0, y \end{array}$	$\begin{array}{c} 0, \bar{y}, y \\ \bar{y}, 0, \bar{y} \end{array}$	$0, y, \bar{y} y, y, 0$	$\begin{array}{c} 0,ar{y},ar{y}\ ar{y},y,0 \end{array}$	$y, 0, y$ $y, \overline{y}, 0$	$y, 0, \bar{y}$ $\bar{y}, \bar{y}, 0$	
12	h	<i>m m</i> 2	$x, \frac{1}{2}, 0$ $\frac{1}{2}, x, 0$	$ar{x}, rac{1}{2}, 0 \ rac{1}{2}, ar{x}, 0$	$0, x, rac{1}{2} \ x, 0, rac{1}{2}$	$0, \bar{x}, rac{1}{2} \ ar{x}, 0, rac{1}{2}$	$\frac{1}{2}, 0, x$ $0, \frac{1}{2}, \bar{x}$	$\frac{1}{2}, 0, \bar{x}$ $0, \frac{1}{2}, x$	
8	g	. 3 <i>m</i>	x, x, x x, x, \overline{x}	$ar{x},ar{x},x$ $ar{x},ar{x},ar{x}$	$ar{x}, x, ar{x}$ $x, ar{x}, x$	x, \bar{x}, \bar{x} \bar{x}, x, x			
6	f	4 <i>m</i> . <i>m</i>	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}, \bar{x}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, x$	$\frac{1}{2}, \frac{1}{2}, \overline{x}$	
6	е	4 <i>m</i> . <i>m</i>	x, 0, 0	$\bar{x}, 0, 0$	0, x, 0	$0, \bar{x}, 0$	0,0, <i>x</i>	$0, 0, \bar{x}$	
3	d	4/mm.	$m = \frac{1}{2}, 0, 0$	$0, \frac{1}{2}, 0$	$0, 0, \frac{1}{2}$				
3	с	4/mm.	$m = 0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, 0$	>			
1	b	<i>m</i> 3 <i>m</i>	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$						
1	а	<i>m</i> 3 <i>m</i>	0, 0, 0						

Origin at 0, 0, z

Origin at x, x, x

EXPLORING INNER SPACE

Origin at x, x, 0

rn

F_{hkl} : structure factor of unit cell

 $F_{hkl} = \sum f_i(\theta) e^{2\pi i (hx_i + ky_i + lz_i)}$

For B2 lattice

 $F_{hkl} = \sum f_i(\theta) e^{2\pi i(hx_i + ky_i + lz_i)}$ $= f_{Al} + f_{Ni} * e^{\pi i(h+k+l)}$

 $e^{\theta i} = \cos \theta + i \sin \theta$ $e^{\pi i} = \cos \pi + i \sin \pi = -1$ $e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1$ Schematic of NiAl lattice

• If (h + k+ l) are even integers:

 $F_{hkl} = f_{Al} + f_{Ni}$ Diffraction patterns with larger intensity

• If (h + k+ l) are odd integers:

 $F_{hkl} = f_{Al} - f_{Ni}$ Diffraction patterns with reduced intensity

For B2 type, all lattice planes existed but with different intensities.

FCC lattice: Space group Pm $\overline{3}$ m, group number 221 Atom locations: Al(x, y, z)=(0,0,0) Ni (x, y, z)=($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$)

For B2 type, all lattice planes existed but with different intensitie

Northwestern University Atomic and

Nanoscale Characterization Experimental Center

CO	NT	INUED)					No. 221	$Pm\overline{3}$
Gei	nera	tors sele	ected (1); $t(1)$,	(0,0); t(0,1,0)); $t(0,0,1);$	(2); (3);	(5); (13); (2	25)	
Pos Mul	tiplic	1S		Coordina	tes				Reflection conditions
Wyc Site	symr	letter, netry						(<i>h,k,l</i> permutable General:
48	n	1	(1) x, y, z (5) z, x, y (9) y, z, x (13) y, x, \overline{z} (17) x, z, \overline{y} (21) z, y, \overline{x} (25) $\overline{x}, \overline{y}, \overline{z}$ (29) $\overline{z}, \overline{x}, \overline{y}$ (33) $\overline{y}, \overline{z}, \overline{x}$ (37) $\overline{y}, \overline{x}, \overline{z}$ (41) $\overline{x}, \overline{z}, \overline{y}$	(2) \bar{x}, \bar{y}, z (6) z, \bar{x}, \bar{y} (10) \bar{y}, z, \bar{x} (14) $\bar{y}, \bar{x}, \bar{z}$ (18) \bar{x}, z, y (20) z, \bar{y}, x (20) z, x, y (30) \bar{z}, x, y (31) y, \bar{z}, x (32) y, \bar{z}, x (33) y, x, z (34) y, \bar{z}, x (35) y, x, z (36) z, x, \bar{z}, \bar{z}	$\begin{array}{c} (3) \ \bar{x}, \\ (7) \ \bar{z}, \\ (11) \ y, \\ (15) \ y, \\ (19) \ \bar{x}, \\ (23) \ \bar{z}, \\ (27) \ x, \\ (31) \ z, \\ (35) \ \bar{y}, \\ (39) \ \bar{y}, \\ (43) \ x, \\ \end{array}$	y, \bar{z} \bar{x}, \bar{y} \bar{x}, \bar{x} (\bar{z}, \bar{y}) (\bar{y}, \bar{z}) (\bar{y}, \bar{z}) (\bar{y}, \bar{z}) (\bar{y}, \bar{z}) (\bar{y}, \bar{z}) (\bar{y}, \bar{z}) (\bar{z}, \bar{y})	(4) x, \bar{y}, \bar{z} (8) \bar{z}, x, \bar{y} (12) \bar{y}, \bar{z}, x (16) \bar{y}, x, z (20) x, \bar{z}, y (24) $\bar{z}, \bar{y}, \bar{x}, z$ (28) \bar{x}, y, z (28) \bar{x}, y, z (29) y, z, \bar{x}, y (30) y, z, \bar{x} (40) y, \bar{x}, \bar{z} (41) \bar{x}, z, \bar{y}		no conditions
			$(45) \ \bar{z}, \bar{y}, x$	$(46)\ \bar{z}, y, \bar{x}$	(47) z,j	\bar{y}, \bar{x} ((48) z, y, x		Special, no avtra condition
24	m	m	r r 7	r r 7	νr.	r r 7	7 r r	7 . .	Special: no extra conditions
24	m		$ar{z}, ar{x}, ar{z}, ar{x}, ar{$	$ar{z}, x, ar{z}$ $ar{z}, x, ar{x}$ $ar{x}, ar{x}, ar{z}$ $x, ar{z}, x$	x, x, z x, z, x x, \overline{x}, z z, x, \overline{x}	\overline{x}, x, z $\overline{x}, z, \overline{x}$ \overline{x}, x, z z, \overline{x}, x	$x, \overline{z}, \overline{x}$ $x, \overline{z}, \overline{x}$ \overline{z}, x, x	$ar{x}, ar{x}, ar{x}$ $ar{x}, ar{z}, ar{x}$ $ar{x}, ar{z}, ar{x}$ $ar{z}, ar{x}, ar{x}$	
24	l	<i>m</i>	$\frac{1}{2}, y, z$ $\overline{z}, \frac{1}{2}, y$ $y, \frac{1}{2}, \overline{z}$ $\frac{1}{3}, \overline{z}, \overline{y}$	$\frac{1}{2}, \overline{y}, \overline{z}$ $\overline{z}, \frac{1}{2}, \overline{y}$ $\overline{y}, \frac{1}{2}, \overline{z}$ $\frac{1}{2}, \overline{z}$	$\frac{1}{2}, y, \overline{z}$ $y, z, \frac{1}{2}$ $y, \frac{1}{2}, z$ $z, y, \frac{1}{3}$	$\frac{\frac{1}{2}, \overline{y}, \overline{z}}{\overline{y}, z, \frac{1}{2}}$ $\frac{\overline{y}, \overline{z}, \overline{z}}{\overline{y}, \frac{1}{2}, z}$ $\overline{z}, \overline{y}, \frac{1}{z}$	$z, \frac{1}{2}, y \\ y, \bar{z}, \frac{1}{2} \\ \frac{1}{2}, z, \bar{y} \\ \bar{z}, y, \frac{1}{3}$	$z, \frac{1}{2}, \overline{y}$ $\overline{y}, \overline{z}, \frac{1}{2}$ $\frac{1}{2}, z, y$ $\overline{z}, \overline{y}, \frac{1}{2}$	
24	k	<i>m</i>	$ \begin{array}{c} 0, y, z \\ \bar{z}, 0, y \\ y, 0, \bar{z} \\ 0, \bar{z}, \bar{y} \end{array} $	$ \begin{array}{c} 0, \bar{y}, z \\ \bar{z}, 0, \bar{y} \\ \bar{y}, 0, \bar{z} \\ 0, \bar{z}, y \end{array} $	$ \begin{array}{c} 0, y, \bar{z} \\ y, z, 0 \\ y, 0, z \\ z, y, 0 \end{array} $	$0, \bar{y}, \bar{z}$ $\bar{y}, z, 0$ $\bar{y}, 0, z$ $z, \bar{y}, 0$	z, 0, y $y, \bar{z}, 0$ $0, z, \bar{y}$ $\bar{z}, y, 0$	$z, 0, \bar{y}$ $\bar{y}, \bar{z}, 0$ 0, z, y $\bar{z}, \bar{y}, 0$	
12	j	<i>m</i> . <i>m</i> 2	$\frac{1}{2}, y, y$ $\overline{y}, \frac{1}{2}, y$	$rac{1}{2},ar{y},y$ $ar{y},rac{1}{2},ar{y}$	$\frac{1}{2}, y, \overline{y}$ $y, y, \frac{1}{2}$	$\frac{1}{2}, \overline{y}, \overline{y}$ $\overline{y}, y, \frac{1}{2}$	$\begin{array}{c} y, \frac{1}{2}, y\\ y, \overline{y}, \frac{1}{2} \end{array}$	$\begin{array}{c} y, \frac{1}{2}, \bar{y} \\ \bar{y}, \bar{y}, \frac{1}{2} \end{array}$	
12	i	<i>m</i> . <i>m</i> 2	$\begin{array}{c} 0, y, y \\ \bar{y}, 0, y \end{array}$	$\begin{array}{c} 0, \bar{y}, y \\ \bar{y}, 0, \bar{y} \end{array}$	$0, y, \bar{y} y, y, 0$	$\begin{array}{c} 0, \bar{y}, \bar{y} \\ \bar{y}, y, 0 \end{array}$	$y, 0, y y, \overline{y}, 0$	$y, 0, \bar{y}$ $\bar{y}, \bar{y}, 0$	
12	h	<i>m m</i> 2	$\begin{array}{c} x, \frac{1}{2}, 0\\ \frac{1}{2}, x, 0 \end{array}$	$ar{x},rac{1}{2},0\ rac{1}{2},ar{x},0$	$0, x, rac{1}{2} \ x, 0, rac{1}{2}$	$\begin{array}{c} 0, \bar{x}, \frac{1}{2} \\ \bar{x}, 0, \frac{1}{2} \end{array}$	$\frac{1}{2}, 0, x$ $0, \frac{1}{2}, \bar{x}$	$\frac{1}{2}, 0, \bar{x}$ $0, \frac{1}{2}, x$	
8	8	. 3 m	x, x, x x, x, \overline{x}	$ar{x},ar{x},x$ $ar{x},ar{x},ar{x}$	$ar{x}, x, ar{x}$ $x, ar{x}, x$	x, \bar{x}, \bar{x} \bar{x}, x, x			
6	f	4 <i>m</i> . <i>m</i>	$x, \frac{1}{2}, \frac{1}{2}$	$\bar{x}, rac{1}{2}, rac{1}{2}$	$\frac{1}{2}, x, \frac{1}{2}$	$\frac{1}{2}, \bar{x}, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, x$	$\frac{1}{2}, \frac{1}{2}, \overline{x}$	
6	е	4 <i>m</i> . <i>m</i>	x, 0, 0	$\bar{x}, 0, 0$	0, x, 0	$0, \bar{x}, 0$	0, 0, x	$0, 0, \bar{x}$	
3	d	4/mm	$m = \frac{1}{2}, 0, 0$	$0, \frac{1}{2}, 0$	$0,0,\frac{1}{2}$				
3	с	4/mm	$m = 0, \frac{1}{2}, \frac{1}{2}$	$\tfrac{1}{2},0,\tfrac{1}{2}$	$\tfrac{1}{2}, \tfrac{1}{2}, 0$				
1	b	m 3 m	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$						
1	а	m3m	0,0,0	ノ					

Symmetry of special projections

Origin at x, x, x

Along [001] *p*4*mm* $\mathbf{a}' = \mathbf{a}$ $\mathbf{b}' = \mathbf{b}$ Origin at 0, 0, z

Along [111] p6mm $\mathbf{a}' = \frac{1}{3}(2\mathbf{a} - \mathbf{b} - \mathbf{c})$ $\mathbf{b}' = \frac{1}{3}(-\mathbf{a} + 2\mathbf{b} - \mathbf{c})$

Along [110] p 2mm $\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$ $\mathbf{b}' = \mathbf{c}$ Origin at x, x, 0

EXPLORING INNER SPACE

 $\bar{3}m$

Electron diffraction patterns of FCC and ordered FCC lattice

Ordered FCC (B2 type)

If (h + k+ l) are even integers: F_{hkl} = f_{Al} + f_{Ni}
If (h + k+ l) are odd integers: F_{hkl} = f_{Al} - f_{Ni}

FCC lattice

- If h, k, l are all even or odd integers $F_{hkl} = f\{1 + e^{2\pi i} + e^{2\pi i} + e^{2\pi i}\}=4f$
- If h, k, l are in mixed even and odd integers $F_{hkl} = f\{1 + 2e^{\pi i} + e^{2\pi i}\}=0$

Ordered FCC (L1₂ type)

• If h, k, l are all even or odd integers: $F_{hkl} = f_{Al} + f_{Ni} * \{e^{2\pi i} + e^{2\pi i} + e^{2\pi i}\} = f_{Al} + 3f_{Ni}$ • If h, k, l are in mixed even and odd integers: $F_{hkl} = f_{Al} + f_{Ni}\{2e^{\pi i} + e^{2\pi i}\} = f_{Al} - f_{Ni}$

Gwalani, et al, Scripta Materialia 123 (2016) 130-134

Northwestern

General catalogs and features of various crystal structures

Crystal Family	Crystal system	Representative symmetry	Lattice parameters	Independent variants	Typical direction	Bravais lattice
	Triclinic	Only 1 or $\overline{1}$	$a \neq b \neq c$ $\alpha \neq \beta \neq \gamma$	6	[100]	Р
Low	Monoolinio		Orientation I: $a \neq b \neq c$ $\alpha = \beta = 90^{\circ}, \gamma \neq 90^{\circ}$	4	[001]	P, B
Symmetry	Monocimic	One z or z	Orientation II: $a \neq b \neq c$ $\alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	4	[010]	P, C
	Orthorhombi c	Three 2 or $\overline{2}$	$a \neq b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	3	[100], [010], [001]	P, C, I, F
	Tetragonal	One 4 or $\overline{4}$	$a = b \neq c$ $\alpha = \beta = \gamma = 90^{\circ}$	2	[001], [100], [110]	P, I
Middle	Trigonal	One 2 or $\overline{2}$	Rhombohedral a = b = c $\alpha = \beta = \gamma \neq 90^{\circ}$	2	[111], [110]	R
symmetry	mgonar	One 5 or 5	Trigonal $a = b \neq c$ $\alpha = \beta = 120^\circ, \gamma \neq 120^\circ$	2	[001], [100], [210]	Р
	Hexagonal One 6 or 6		$a = b \neq c$ $\alpha = \beta = 120^\circ, \gamma \neq 120^\circ$	2	[001], [100], [210]	Р
High symmetry	Cubic	Four 4 or $\overline{4}$	$a = b = c$ $\alpha = \beta = \gamma = 90^{\circ}$	1	[001], [111], [110]	P, I, F

Northwestern

EXPLORING INNER SPACE

- Full space group notation can tell us the existed critical symmetry elements.
- Short space group notation is more concise since combined symmetry elements can generate the other symmetry elements

Matrix operation for 4-fold axis along [001]

$$\begin{pmatrix} x'\\ y'\\ z' \end{pmatrix} = W1^* \begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{bmatrix} 0 & \overline{1} & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} * \begin{pmatrix} x\\ y\\ z \end{pmatrix}$$

Northwestern EXPLORING INNER SPACE

F_{hkl} : structure factor of unit cell

 $F_{hkl} = \sum f_i(\theta) e^{2\pi i (hx_i + ky_i + lz_i)}$

For atoms/cluster at the most general positions:

$$\begin{split} F_{hkl} &= f * \left\{ e^{2\pi i (hx + ky + lz)} + e^{2\pi i (-hx - ky + lz)} + e^{2\pi i (-hy + kx + lz)} + e^{2\pi i (hy - kx + lz)} + e^{2\pi i (hy - kx + lz)} + e^{2\pi i (hx - ky - lz)} + e^{2\pi i (hx + ky - lz)} + e^{2\pi i (-hy - kx - lz)} \right] + e^{-2\pi i (hx + ky + lz)} + e^{2\pi i (-hx - ky + lz)} + e^{-2\pi i (-hy + kx + lz)} + e^{-2\pi i (-hx - ky + lz)} + e^{-2\pi i (-hy + kx + lz)} + e^{-2\pi i (hy - kx + lz)} + e^{2\pi i (hy + kx - lz)} + e^{-2\pi i (-hy - kx - lz)} + e^{-2\pi i (hy - kx - lz)} + e^{2\pi i (hy + kx - lz)} + e^{-2\pi i (-hy - kx - lz)} + e^{2\pi i (hy + kx - lz)} + e^{-2\pi i (-hy - kx - lz)} \right] \end{split}$$

 $= 2f * \{ \cos 2\pi (hx + ky + lz) + \cos 2\pi (-hx - ky + lz) + \cos 2\pi (-hy + kx + lz) + \cos 2\pi (hy - kx + lz) + e^{\pi i (h+k)} [\cos 2\pi (-hx + ky - lz) + \cos 2\pi (hx - ky - lz) + \cos 2\pi (hy + kx - lz) + \cos 2\pi (hy + kx + lz)] \}$

 $e^{\theta i} = \cos \theta + i \sin \theta$ $e^{-\theta i} = \cos \theta - i \sin \theta$ $e^{\theta i} + e^{-\theta i} = 2 \cos \theta$

CONTINUED

No. 127

P4/mbm

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

P M W	Positions Multiplicity, Wyckoff letter,			Coordinates			Most general positions Reflection condition			
Si	ite s	symn	netry					•		General:
10	6	l	1 (1	(1) x, y, z (5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z}$ (9) $\bar{x}, \bar{y}, \bar{z}$ (3) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$	(2) \bar{x} , (6) x (10) x , (14) \bar{x}	$ \bar{y}, z + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} y, \bar{z} + \frac{1}{2}, y + \frac{1}{2}, z $	(3) \bar{y}, x (7) $y +$ (11) y, \bar{x} (15) $\bar{y} +$	$\begin{array}{c} 7, z \\ \frac{1}{2}, x + \frac{1}{2}, \bar{z} \\ , \bar{z} \\ \frac{1}{2}, \bar{x} + \frac{1}{2}, z \end{array}$	(4) y, \bar{x}, z (8) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) $y + \frac{1}{2}, x + \frac{1}{2}, z$	0kl : k = 2n h00 : h = 2n
										Special: as above, plus
;	8	k	<i>m</i>	$\begin{array}{c} x, x + \frac{1}{2}, z \\ \bar{x} + \frac{1}{2}, x, \bar{z} \end{array}$	$\begin{array}{c} \bar{x}, \bar{x} + \\ x + \frac{1}{2}, \end{array}$	$\frac{1}{2}, z \qquad \bar{x}$ $\bar{x}, \bar{z} \qquad x$	$+\frac{1}{2}, x, z$ $x + \frac{1}{2}, \overline{z}$	$\begin{array}{c} x + \frac{1}{2}, \bar{x}, z \\ \bar{x}, \bar{x} + \frac{1}{2}, \bar{z} \end{array}$		no extra conditions
;	8	j	<i>m</i>	$\begin{array}{c} x, y, \frac{1}{2} \\ \bar{x} + \frac{1}{2}, y + \frac{1}{2} \end{array}$	\overline{x}	$ar{y}, rac{1}{2} + rac{1}{2}, ar{y} + rac{1}{2}, rac{1}{2}$	$ \bar{y}, x, \frac{1}{2} \\ y + \frac{1}{2}, $	$x + \frac{1}{2}, \frac{1}{2}$	$\begin{array}{c} y, \bar{x}, \frac{1}{2} \\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2} \end{array}$	no extra conditions
;	8	i	<i>m</i>	$\begin{array}{c} x, y, 0\\ \bar{x} + \frac{1}{2}, y + \frac{1}{2} \end{array}$	$\bar{x}_{2},0$ x	$\bar{y}, 0$ + $\frac{1}{2}, \bar{y} + \frac{1}{2}, 0$	$\overline{y}, x, 0$ $y + \frac{1}{2}$	$x + \frac{1}{2}, 0$	$\begin{array}{l} y, \bar{x}, 0\\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, 0 \end{array}$	no extra conditions
4	4	h	<i>m</i> .2 <i>m</i>	$x, x + \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \bar{x} +$	$\frac{1}{2}, \frac{1}{2}$ \tilde{X}	$+\frac{1}{2}, x, \frac{1}{2}$	$x+\frac{1}{2}, \bar{x}, \frac{1}{2}$		no extra conditions
4	4	8	<i>m</i> .2 <i>m</i>	$x, x + \frac{1}{2}, 0$	$\bar{x}, \bar{x} +$	$\frac{1}{2}, 0 \qquad \bar{x}$	$+\frac{1}{2}, x, 0$	$x + \frac{1}{2}, \bar{x}, 0$		no extra conditions
4	4	f	2 . <i>mm</i>	$0, \frac{1}{2}, z$	$\frac{1}{2}, 0, z$	$\frac{1}{2},0,\overline{z}$	$0, \frac{1}{2}, \overline{z}$			hkl : $h+k=2n$
4	4	е	4	0, 0, z	$\frac{1}{2}, \frac{1}{2}, \overline{z}$	$0,0,ar{z}$	$rac{1}{2},rac{1}{2},\mathcal{Z}$			hkl : $h+k=2n$
	2	d	<i>m</i> . <i>mm</i>	$0, \frac{1}{2}, 0$	$\frac{1}{2},0,0$					hkl : $h+k=2n$
	2	с	<i>m</i> . <i>mm</i>	$0, \tfrac{1}{2}, \tfrac{1}{2}$	$\tfrac{1}{2},0,\tfrac{1}{2}$					hkl : $h+k=2n$
	2	b	4/m	$0,0,rac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$					hkl : $h+k=2n$
	2	а	4/m	0, 0, 0	$\tfrac{1}{2}, \tfrac{1}{2}, 0$					hkl : $h+k=2n$
S A a' O	yn lor ' = Drig	n me ng [0 a in at	try of sp 01] p 4 g n b' = b z 0, 0, z	ecial projection	ns Al a' : Or	$\begin{array}{l} \text{ong} [100] \ p'_{2} \\ = \frac{1}{2} \mathbf{b} \qquad \mathbf{b}' \\ \text{igin at } x, 0, 0 \end{array}$	2mm = c		Along [110] $p2n$ $\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$ Origin at $x, x, 0$	$\mathbf{b}' = \mathbf{c}$
N I	/Iay	xima [2 [2 [2 [2	al non-is $P_{2}^{1} P_{4}^{1} b_{2} (1)$ $P_{2}^{1} P_{4}^{2} m$ $P_{2}^{1} P_{4}^{1} b_{m} (1)$ $P_{4}^{2} P_{4}^{2} 2 (1)$	omorphic subg 117) (113) 100) 90)	groups 1; 2; 7 1; 2; 2 1; 2; 1 1; 2; 2	7; 8; 11; 12 5; 6; 11; 12 3; 4; 13; 14 3: 4: 5: 6:	2; 13; 14 2; 15; 16 4; 15; 16 7: 8			

 $= 2f * \{\cos 2\pi (hx + ky + lz) + \cos 2\pi (-hx - ky + lz) + \cos 2\pi (-hy + kx + lz) + \cos 2\pi (hy - kx + lz) + e^{\pi i (h+k)} [\cos 2\pi (-hx + ky - lz) + \cos 2\pi (hx - ky - lz) + \cos 2\pi (hy + kx - lz) + \cos 2\pi (hy + kx + lz)] \}$ = 4f * cos2\pi lz * \{cos 2\pi (hx + ky) + cos 2\pi (-hy + kx) + e^{\pi i (h+k)} [\cos 2\pi (-hx + ky) + \cos 2\pi (hy + kx)] \}

Let us consider crystal planes (hkl) with special cases:

□ For (hkl) with special cases k=l=0, namely types of (h,0,0) F= 4f * { $cos 2\pi hx + cos 2\pi hy + e^{\pi ih} [cos 2\pi hx + cos 2\pi hy]$ } If h=even numbers, F=0; (reflection rule resulted from the screw axis 2¹ operation along [100] direction)

□ For (hkl) with special cases h=0, namely types of (0,k,l) F=4f * $\cos 2\pi lz$ * { $\cos 2\pi ky + \cos 2\pi kx + e^{\pi ik} [\cos 2\pi ky + \cos 2\pi kx]$ } If k=even numbers, F=0; (reflection rule resulted from the b glide reflection operation perpendicular to [100] direction) $cos(\alpha + \beta) = cos\alpha cos\beta - sin\alpha sin\beta$ $cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$ $cos(\alpha + \beta) - cos(\alpha - \beta) = 2cos\alpha cos\beta$

$$e^{\theta i} = \cos \theta + i \sin \theta$$

$$e^{\pi i} = \cos \pi + i \sin \pi = -1$$

$$e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1$$

CONTINUED

No. 127 *P4/mbm*

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Positions					
Multiplicity, Wyckoff letter,		Coordinates			Reflection conditions
Site symmetry					General:
16 <i>l</i> 1	(1) x, y, z (5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z}$ (9) $\bar{x}, \bar{y}, \bar{z}$ (13) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$	(2) \bar{x}, \bar{y}, z (6) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z}$ (10) x, y, \bar{z} (14) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, z$	(3) \bar{y}, x, z (7) $y + \frac{1}{2}, x + \frac{1}{2}, \bar{z}$ (11) y, \bar{x}, \bar{z} (15) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, z$	(4) y, \bar{x}, z (8) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) $y + \frac{1}{2}, x + \frac{1}{2}, z$	0kl : k = 2n h00: h = 2n

CONTINUED

P4/mbm

```
Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)
```

Post Mult Wyc	ition iplici koff l	IS ty, etter,		Coordin	ates				Reflection condition
Site	symn	netry							General:
16	l	1 ((((1	1) x, y, z 5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z}$ 9) $\bar{x}, \bar{y}, \bar{z}$ 3) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$	(2) \bar{x}, \bar{y} (6) $x +$ (10) x, y (14) $\bar{x} +$	$ \begin{array}{c} ,z \\ \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} \\ ,\bar{z} \\ \frac{1}{2}, y + \frac{1}{2}, z \end{array} $	(3) \bar{y}, x (7) $y +$ (11) y, \bar{x} (15) $\bar{y} +$	$ \begin{array}{l} \bar{z}, z \\ -\frac{1}{2}, x + \frac{1}{2}, \bar{z} \\ \bar{z}, \bar{z} \\ -\frac{1}{2}, \bar{x} + \frac{1}{2}, z \end{array} $	(4) y, \bar{x}, z (8) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) $y + \frac{1}{2}, x + \frac{1}{2}, z$	0kl : k = 2n h00 : h = 2n
									Special: as above,
8	k	<i>m</i>	$\begin{array}{c} x, x + \frac{1}{2}, z \\ \bar{x} + \frac{1}{2}, x, \bar{z} \end{array}$	$\begin{array}{c} \bar{x}, \bar{x} + \frac{1}{2} \\ x + \frac{1}{2}, \bar{x} \end{array}$	$,z$ \bar{x} - $,\bar{z}$ x,z	$\begin{array}{c} +\frac{1}{2}, x, z\\ x+\frac{1}{2}, \overline{z} \end{array}$	$\begin{array}{c} x + \frac{1}{2}, \bar{x}, z \\ \bar{x}, \bar{x} + \frac{1}{2}, \bar{z} \end{array}$		no extra conditions
8	j	<i>m</i>	$\begin{array}{c} x, y, \frac{1}{2} \\ \bar{x} + \frac{1}{2}, y + \frac{1}{2}, \end{array}$	\bar{x}, \bar{y} \bar{z} $x +$	$\bar{y}, \frac{1}{2}, \frac{1}{2}, \bar{y}, +\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	$\begin{array}{c} \bar{y}, x, \frac{1}{2} \\ y + \frac{1}{2} \end{array}$	$, x + \frac{1}{2}, \frac{1}{2}$	$\begin{array}{c} y, \bar{x}, \frac{1}{2} \\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2} \end{array}$	no extra conditions
8	i	<i>m</i>	$\begin{array}{c} x, y, 0\\ \bar{x} + \frac{1}{2}, y + \frac{1}{2}, 0 \end{array}$	(\bar{x}, \bar{y})	$\bar{y}, 0$ $\frac{1}{2}, \bar{y} + \frac{1}{2}, 0$	$ \bar{y}, x, 0 \\ y + \frac{1}{2} $	$, x + \frac{1}{2}, 0$	$y, \bar{x}, 0$ $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, 0$	no extra conditions
4	h	<i>m</i> .2 <i>m</i>	$x, x + \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \bar{x} + \frac{1}{2}$	$, \frac{1}{2}$ \bar{X}	$+\frac{1}{2}, x, \frac{1}{2}$	$x+rac{1}{2},ar{x},rac{1}{2}$		no extra conditions
4	8	<i>m</i> .2 <i>m</i>	$x, x + \frac{1}{2}, 0$	$\bar{x}, \bar{x} + \frac{1}{2}$	$,0$ \bar{x}	$+\frac{1}{2}, x, 0$	$x + \frac{1}{2}, \bar{x}, 0$		no extra conditions
4	f	2 . <i>mm</i>	$0, \frac{1}{2}, z$	$\frac{1}{2}, 0, z$	$\frac{1}{2}, 0, \overline{z}$	$0, \frac{1}{2}, \overline{z}$			hkl : $h+k=2n$
4	е	4	0, 0, z	$\frac{1}{2}, \frac{1}{2}, \overline{z}$	$0, 0, \bar{z}$	$\frac{1}{2}, \frac{1}{2}, Z$			hkl : $h+k=2n$
2	d	<i>m</i> . <i>mm</i>	$0, \frac{1}{2}, 0$	$\frac{1}{2}, 0, 0$					hkl : $h+k=2n$
2	с	<i>m</i> . <i>mm</i>	$0, \frac{1}{2}, \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$		Speci	al pos	itions	hkl : $h+k=2n$
2	b	4/m	$0,0,rac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$		with	x=v=z		hkl : $h+k=2n$
2 Syn	a	4/m	0,0,0	$\frac{1}{2}, \frac{1}{2}, 0$,		hkl : h+k=2n
Aloi $\mathbf{a}' =$ Orig	ng [0 a gin at	01] $p 4 g m$ b' = b 0, 0, z		Alor $\mathbf{a}' =$ Orig	$ \begin{array}{l} & \text{ng} \ [100] \ p \ 2 \\ \frac{1}{2} \mathbf{b} \qquad \mathbf{b}' = \\ & \text{sin at } x, 0, 0 \end{array} $	$mm = \mathbf{c}$		Along [110] p 2 $\mathbf{a}' = \frac{1}{2}(-\mathbf{a} + \mathbf{b})$ Origin at $x, x, 0$	$\mathbf{b}' = \mathbf{c}$
Ma	xima	al non-iso	morphic subgro	oups					
I	[2 [2 [2	$P\bar{4}b2(1)$ $P\bar{4}2_{1}m(1)$ $P\bar{4}2_{1}m(1)$	17) (113) (100)	1; 2; 7; 1; 2; 5; 1; 2; 3;	8; 11; 12 6; 11; 12 4; 13; 14	; 13; 14 ; 15; 16 ; 15; 16			

- For initial atoms located at general position (x, y, z): F= 4f * $\cos 2\pi lz$ * { $\cos 2\pi (hx + ky) + \cos 2\pi (-hy + kx) + e^{\pi i (h+k)} [\cos 2\pi (-hx + ky) + \cos 2\pi (hy + kx)]$ }
- Let us consider atoms/clusters located at special positions (x, y, z) with x=y=z=0
- F= 8f * $\{1 + e^{\pi i(h+k)}\}$
- \Box For (hkl) with h+k=even numbers, F=0

 $e^{\pi i} = \cos \pi + i \sin \pi = -1$ $e^{2\pi i} = \cos 2\pi + i \sin 2\pi = 1$

$$= f * \{8 + e^{\pi i(h+k)} [e^{2\pi i(-hx+ky-lz)} + e^{2\pi i(hx-ky-lz)} + e^{2\pi i(hy+kx-lz)} + e^{2\pi i(-hy-kx-lz)}] + e^{\pi i(h+k)} [e^{-2\pi i(-hx+ky-lz)} + e^{-2\pi i(hx-ky-lz)} + e^{-2\pi i(hy+kx-lz)} + e^{-2\pi i(-hy-kx-lz)}]\}$$

$$= 8f * \{1 + e^{\pi i(h+k)}\}$$

For any reflection (hkl), if h+k are odd numbers, F=16f
 For (0kl) type, k must be odd number; (reflection rule resulted from the b
 glide reflection operation perpendicular to [100] direction)
 For (h00) type, h must be odd number; (reflection rule resulted from the
 screw axis 2¹ operation along [100] direction)

□ For any reflection (hkl), if h+k are even numbers, F=0

Only partial lattice translation (Face centered lattice, Body centered lattice, side centered lattice) and symmetry operation having partial translations (glide reflections and screw axes) can cause lattice extinction.

CONTINUED

No. 127

P4/mbm

Pos Mult Vyc	i tio iplic koff	ns ity, letter,		Coordi	nates				Reflection conditions
ne	synn	neu y							General:
6	l		1) x, y, z 5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z}$ 9) $\bar{x}, \bar{y}, \bar{z}$ 3) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$	(2) \bar{x} , (6) x (10) x , (14) \bar{x}	$ \begin{array}{l} \bar{y}, z \\ +\frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{z} \\ y, \bar{z} \\ +\frac{1}{2}, y + \frac{1}{2}, z \end{array} $	(3) <u>y</u> , (7) <u>y</u> - (11) <u>y</u> , (15) <u>y</u> -	$ \begin{array}{l} x, z \\ +\frac{1}{2}, x + \frac{1}{2}, \bar{z} \\ \bar{x}, \bar{z} \\ +\frac{1}{2}, \bar{x} + \frac{1}{2}, z \end{array} $	$ \begin{array}{c} (4) \ y, \bar{x}, z \\ (8) \ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z} \\ (12) \ \bar{y}, x, \bar{z} \\ (16) \ y + \frac{1}{2}, x + \frac{1}{2}, z \end{array} $	0kl : k = 2n h00: h = 2n
									Special: as above, plus
8	k	<i>m</i>	$\begin{array}{c} x, x + \frac{1}{2}, z \\ \bar{x} + \frac{1}{2}, x, \bar{z} \end{array}$	$ \bar{x}, \bar{x} + x + \frac{1}{2}, $	$\frac{1}{2}, z$ \bar{x} \bar{x}, \bar{z} x	$\bar{t} + \frac{1}{2}, x, z$ $t, x + \frac{1}{2}, \bar{z}$	$\begin{array}{c} x+\frac{1}{2},\bar{x},z\\ \bar{x},\bar{x}+\frac{1}{2},\bar{z} \end{array}$		no extra conditions
8	j	<i>m</i>	$ \begin{array}{c} x, y, \frac{1}{2} \\ \bar{x} + \frac{1}{2}, y + \frac{1}{2} \end{array} $	$,\frac{1}{2}$ \overline{x}	$(\bar{y}, \frac{1}{2})$ $+ \frac{1}{2}, \bar{y} + \frac{1}{2}, \frac{1}{2}$	$\overline{y}, x, y + \frac{1}{2}$	$x + \frac{1}{2}, x + \frac{1}{2}, \frac{1}{2}$	$\begin{array}{c} y, \bar{x}, \frac{1}{2} \\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2} \end{array}$	no extra conditions
8	i	<i>m</i>	$\begin{array}{c} x, y, 0\\ \bar{x} + \frac{1}{2}, y + \frac{1}{2} \end{array}$	$,0$ \bar{x}	$(\bar{y}, 0)$ $(+\frac{1}{2}, \bar{y} + \frac{1}{2}, 0)$	$\begin{array}{c} \bar{y}, x, 0\\ y + \frac{1}{2} \end{array}$	$x^{0}, x + \frac{1}{2}, 0$	$y, \bar{x}, 0$ $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, 0$	no extra conditions
4	h	<i>m</i> .2 <i>m</i>	$x, x + \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \bar{x} +$	$\frac{1}{2}, \frac{1}{2}$.	$\bar{x} + \frac{1}{2}, x, \frac{1}{2}$	$x + \frac{1}{2}, \overline{x}, \frac{1}{2}$		no extra conditions
4	8	<i>m</i> .2 <i>m</i>	$x, x + \frac{1}{2}, 0$	$\bar{x}, \bar{x} +$	$\frac{1}{2}, 0$.	$\bar{x} + \frac{1}{2}, x, 0$	$x + \frac{1}{2}, \bar{x}, 0$		no extra conditions
4	f	2 . <i>mm</i>	$0, \frac{1}{2}, z$	$\frac{1}{2}, 0, z$	$\frac{1}{2}, 0, \overline{z}$	$0, \frac{1}{2}, \overline{z}$			hkl : $h+k=2n$
4	е	4	0, 0, z	$\frac{1}{2}, \frac{1}{2}, \overline{z}$	$0,0,ar{z}$	$\frac{1}{2}, \frac{1}{2}, \mathcal{Z}$			hkl : $h+k=2n$
2	d	<i>m</i> . <i>mm</i>	$0, \tfrac{1}{2}, 0$	$\frac{1}{2},0,0$					hkl : $h+k=2n$
2	с	<i>m</i> . <i>mm</i>	$0, \tfrac{1}{2}, \tfrac{1}{2}$	$\tfrac{1}{2},0,\tfrac{1}{2}$					hkl : $h+k=2n$
2	b	4/m	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$					hkl : $h+k=2n$
2	а	4/m	0, 0, 0	${\scriptstyle\frac{1}{2},\frac{1}{2},0}$					hkl : $h+k=2n$
3yn	ıme	etry of spe	cial projection	ıs				L.	
Aloı (= Drig	ng [(a in a	b(01] p 4 g m b' = b t 0, 0, z		Al a ' : Or	ong [100] p = $\frac{1}{2}$ b b igin at $x, 0, 1$	2mm r' = c 0		Along [110] $p 2a$ $a' = \frac{1}{2}(-a + b)$ Origin at <i>x</i> , <i>x</i> ,0	mm b' = c
Ma	xim	al non-iso	morphic subg	roups					
I	[] [] [] []	2] $P\bar{4}b2$ (1) 2] $P\bar{4}2_{1}m$ (2) 2] $P4bm$ (1) 2] $P42 - 2$ (9)	17) 113) 00)	1; 2; 1; 2; 1; 2; 1; 2;	7; 8; 11; 1 5; 6; 11; 1 3; 4; 13; 1 3: 4: 5: 6:	2; 13; 14 2; 15; 16 4; 15; 16 7: 8			

Let us move on to a real structure

D5a-M₃B₂ boride: (M=Cr, Mo, Fe) Space group: No. 127, P4/mbm Lattice parameter: a=b=5.7 Å, c=3.0 Å Atomic locations: M: 4h, 0.173, 0.673, 0 M: 2a, 0, 0, 0 B: 4g, 0.388, 0.888, 0

For 4h position, $y=x+\frac{1}{2}$, $z=\frac{1}{2}$ $F_{4h}=4f * \cos 2\pi lz * \{\cos 2\pi (hx + ky) + \cos 2\pi (-hy + kx) + e^{\pi i (h+k)} [\cos 2\pi (-hx + ky) + \cos 2\pi (hy + kx)] \}$ $= 4f * \cos \pi l * \{\cos [2\pi (h + k)x + k\pi] + \cos [2\pi (k - h)x + h\pi]) + e^{\pi i (h+k)} [\cos [2\pi (k - h)x + k\pi] + \cos [2\pi (h + k)x + h\pi]] \}$

CONTINUED

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Po Mu Wy	sitio Itiplio ckoff	ns city, letter,		Coordinates				Reflection conditions
Site	e sym	metry						General:
16	l	1	(1) x, y, z (5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z}$ (9) $\bar{x}, \bar{y}, \bar{z}$ (13) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$	(2) \bar{x}, \bar{y}, z (6) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, $ (10) x, y, \bar{z} (14) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, $	$\begin{array}{ccc} (3) \ \bar{y}, x, \\ \bar{z} & (7) \ y + \\ (11) \ y, \bar{x}, \\ z & (15) \ \bar{y} + \\ \end{array}$	$ \begin{array}{c} z \\ \frac{1}{2}, x + \frac{1}{2}, \bar{z} \\ \bar{z} \\ \frac{1}{2}, \bar{x} + \frac{1}{2}, z \end{array} $	(4) y, \bar{x}, z (8) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) $y + \frac{1}{2}, x + \frac{1}{2}, z$	0kl : k = 2n h00 : h = 2n
								Special: as above, plus
8	k		$\begin{array}{c} x, x + \frac{1}{2}, z \\ \bar{x} + \frac{1}{2}, x, \bar{z} \end{array}$	$ \bar{x}, \bar{x} + \frac{1}{2}, z \\ x + \frac{1}{2}, \bar{x}, \bar{z} $	$ \bar{x} + \frac{1}{2}, x, z \\ x, x + \frac{1}{2}, \bar{z} $	$\begin{array}{c} x + \frac{1}{2}, \bar{x}, z\\ \bar{x}, \bar{x} + \frac{1}{2}, \bar{z} \end{array}$		no extra conditions
8	j	<i>m</i>	$ \begin{array}{c} x, y, \frac{1}{2} \\ \bar{x} + \frac{1}{2}, y + \frac{1}{2}, \frac{1}{2} \end{array} $	$ \begin{array}{c} \bar{x}, \bar{y}, \frac{1}{2} \\ x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \end{array} $		$x + \frac{1}{2}, \frac{1}{2}$	$\begin{array}{c} y, \bar{x}, \frac{1}{2} \\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2} \end{array}$	no extra conditions
8	i	<i>m</i>	$\begin{array}{c} x, y, 0\\ \bar{x} + \frac{1}{2}, y + \frac{1}{2}, 0 \end{array}$	$ \begin{array}{c} \bar{x}, \bar{y}, 0\\ x+\frac{1}{2}, \bar{y}+\frac{1}{2}, \end{array} $	$,0 \qquad \begin{array}{c} \bar{y},x,0\\ y+\frac{1}{2},\end{array}$	$x + \frac{1}{2}, 0$	$\begin{array}{l} y, \bar{x}, 0\\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, 0 \end{array}$	no extra conditions
4	h	<i>m</i> .2	$m \qquad x, x + \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \bar{x} + \frac{1}{2}, \frac{1}{2}$	$\bar{x} + \frac{1}{2}, x, \frac{1}{2}$	$x + \frac{1}{2}, \overline{x}, \frac{1}{2}$		no extra conditions
4	8	<i>m</i> .2	$m \qquad x, x+\frac{1}{2}, 0$	$\bar{x}, \bar{x} + \frac{1}{2}, 0$	$\bar{x} + \frac{1}{2}, x, 0$	$x + \frac{1}{2}, \bar{x}, 0$	<u>.</u>	no extra conditions
4	f	2 . m	$m = 0, \frac{1}{2}, z = \frac{1}{2}$	$,0,z$ $\frac{1}{2},0,\overline{z}$	$0, \frac{1}{2}, \overline{z}$			hkl : $h+k=2n$
4	е	4	$0, 0, z$ $\frac{1}{2}$	$, \frac{1}{2}, \overline{z} \qquad 0, 0, \overline{z}$	$\frac{1}{2}, \frac{1}{2}, \mathcal{I}$			hkl : $h+k=2n$
2	d	<i>m</i> . <i>m</i>	$m = 0, \frac{1}{2}, 0 = \frac{1}{2}$,0,0				hkl : $h+k=2n$
2	С	<i>m</i> . <i>m</i>	$m = 0, \frac{1}{2}, \frac{1}{2} = \frac{1}{2}$	$\frac{1}{2}, 0, \frac{1}{2}$				hkl : $h+k=2n$
2	b	4/m .	$0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$				hkl : $h+k=2n$
2	а	4/m	. 0,0,0 1	$\frac{1}{2}, \frac{1}{2}, 0$				hkl : $h+k=2n$
Sy	mm	etry of	special projections	í				

Hu, et al, Scientific reports 4 (2014), 7367

Northwestern

Let us move on to a real structure

Nanoscale Characterization Experimental Cent

D5a-M₃B₂ boride: (M=Cr, Mo, Fe) Space group: No. 127, P4/mbm Lattice parameter: a=b=5.7 Å, c=3.0 Å Atomic locations: M: 4h, 0.173, 0.673, 0 M: 2a, 0, 0, 0 B: 4g, 0.388, 0.888, 0

For 4g position, $y=x+\frac{1}{2}$, z=0 $F_{4g}=4f * \cos 2\pi lz * \{\cos 2\pi (hx + ky) + \cos 2\pi (-hy + kx) + e^{\pi i (h+k)} [\cos 2\pi (-hx + ky) + \cos 2\pi (hy + kx)] \}$

 $= 4f * \left\{ \cos[2\pi(h+k)x + k\pi] + \cos[2\pi(k-h)x + h\pi] \right\} +$

 $e^{\pi i(h+k)} [\cos[2\pi(k-h)x+k\pi] + \cos[2\pi(h+k)x+h\pi]] \}$

CONTINUED

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Pos	sitior	ıs						
Mul Wv	tiplici	ity, letter		Coordinates				Reflection conditions
Site	symn	netry						General:
16	l	1	(1) x, y, z (5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z}$ (9) $\bar{x}, \bar{y}, \bar{z}$ 13) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$	(2) $\bar{x}, \bar{y}, \bar{z}$ (6) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{y} + \frac{1}{2}, y$	$(3) \ \bar{y}, x, (7) \ y + (11) \ y, \bar{x}, (15) \ \bar{y} + $	$ \begin{array}{c} z \\ \frac{1}{2}, x + \frac{1}{2}, \bar{z} \\ \bar{z} \\ \frac{1}{2}, \bar{x} + \frac{1}{2}, z \end{array} $	(4) y, \bar{x}, z (8) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) $y + \frac{1}{2}, x + \frac{1}{2}, z$	0kl : k = 2n h00: h = 2n
								Special: as above, plus
8	k	<i>m</i>	$\begin{array}{c} x, x + \frac{1}{2}, z \\ \bar{x} + \frac{1}{2}, x, \bar{z} \end{array}$	$ \bar{x}, \bar{x} + \frac{1}{2}, z \\ x + \frac{1}{2}, \bar{x}, \bar{z} $	$ \bar{x} + \frac{1}{2}, x, z \\ x, x + \frac{1}{2}, \bar{z} $	$\begin{array}{c} x + \frac{1}{2}, \bar{x}, z\\ \bar{x}, \bar{x} + \frac{1}{2}, \bar{z} \end{array}$		no extra conditions
8	j	<i>m</i>	$ \begin{array}{c} x, y, \frac{1}{2} \\ \bar{x} + \frac{1}{2}, y + \frac{1}{2}, \frac{1}{2} \end{array} $	$ \begin{array}{c} \bar{x}, \bar{y}, \frac{1}{2} \\ x + \frac{1}{2}, \bar{y} + \frac{1}{2} \end{array} $	$, \frac{\bar{y}, x, \frac{1}{2}}{y + \frac{1}{2}}, $	$x + \frac{1}{2}, \frac{1}{2}$	$\begin{array}{c} y, \bar{x}, \frac{1}{2} \\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2} \end{array}$	no extra conditions
8	i	<i>m</i>	x, y, 0 $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, 0$	$ \begin{array}{c} \bar{x}, \bar{y}, 0\\ x+\frac{1}{2}, \bar{y}+\frac{1}{2} \end{array} $	$,0$ $egin{array}{c} ar y,x,0\ y+rac{1}{2}, egin{array}{c} y \\ y \end{pmatrix}$	$x + \frac{1}{2}, 0$	$y, \bar{x}, 0$ $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, 0$	no extra conditions
4	h	<i>m</i> .2 <i>m</i>	$x, x + \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \bar{x} + \frac{1}{2}, \frac{1}{2}$	$\bar{x} + \frac{1}{2}, x, \frac{1}{2}$	$x + \frac{1}{2}, \bar{x}, \frac{1}{2}$		no extra conditions
4	g	<i>m</i> .2 <i>m</i>	$x, x + \frac{1}{2}, 0$	$\bar{x}, \bar{x} + \frac{1}{2}, 0$	$\bar{x} + \frac{1}{2}, x, 0$	$x + \frac{1}{2}, \bar{x}, 0$		no extra conditions
4	f	2 . <i>mm</i>	$0, \frac{1}{2}, z, \frac{1}{2}$	$,0,z$ $\frac{1}{2},0,\overline{z}$	$0, \frac{1}{2}, \overline{z}$			hkl : $h+k=2n$
4	е	4	$0, 0, z$ $\frac{1}{2}$	$, \frac{1}{2}, \overline{z} \qquad 0, 0, \overline{z}$	$\frac{1}{2}, \frac{1}{2}, \mathcal{I}$			hkl : $h+k=2n$
2	d	<i>m</i> . <i>mm</i>	$0, \frac{1}{2}, 0$ $\frac{1}{2}$,0,0				hkl : $h+k=2n$
2	С	<i>m</i> . <i>mm</i>	$0, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}$	$,0,\frac{1}{2}$				hkl : $h+k=2n$
2	b	4/m	$0,0,rac{1}{2}$ $rac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$				hkl : $h+k=2n$
2	а	4/m	$0, 0, 0$ $\frac{1}{2}$	$1, \frac{1}{2}, 0$				hkl : $h+k=2n$
Syı	nme	try of sp	ecial projections	í				

Hu, et al, Scientific reports 4 (2014), 7367

Let us move on to a real structure

D5a-M₃B₂ boride: (M=Cr, Mo, Fe) Space group: No. 127, P4/mbm Lattice parameter: a=b=5.7 Å, c=3.0 Å Atomic locations: M: 4h, 0.173, 0.673, 0 M: 2a, 0, 0, 0 B: 4g, 0.388, 0.888, 0

For 2a position, x=y=z=0

$$F_{2a} = 4f * \cos 2\pi lz * \left\{ \cos 2\pi (hx + ky) + \cos 2\pi (-hy + kx) - e^{\pi i (h+k)} [\cos 2\pi (-hx + ky) + \cos 2\pi (hy + kx)] \right\}$$

 $=4f * \{2 + 2e^{\pi i(h+k)}\}$

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (9)

Pos	sitio	ns						
Mul Wya	tiplic koff	ity, letter		Coordinates				Reflection conditions
Site	sym	netry						General:
16	l	1	(1) x, y, z (5) $\bar{x} + \frac{1}{2}, y + \frac{1}{2}, \bar{z}$ (9) $\bar{x}, \bar{y}, \bar{z}$ (13) $x + \frac{1}{2}, \bar{y} + \frac{1}{2}, z$	(2) \bar{x}, \bar{y}, z (6) $x + \frac{1}{2}, \bar{y} +$ (10) x, y, \bar{z} (14) $\bar{x} + \frac{1}{2}, y +$	$\begin{array}{cccc} (3) \ \bar{y}, z \\ \frac{1}{2}, \bar{z} \\ (7) \ y + \\ (11) \ y, z \\ \frac{1}{2}, z \\ (15) \ \bar{y} + \end{array}$	$ x, z - \frac{1}{2}, x + \frac{1}{2}, \overline{z} \overline{z}, \overline{z} - \frac{1}{2}, \overline{x} + \frac{1}{2}, z $	(4) y, \bar{x}, z (8) $\bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \bar{z}$ (12) \bar{y}, x, \bar{z} (16) $y + \frac{1}{2}, x + \frac{1}{2}, z$	0kl : k = 2n h00: h = 2n
								Special: as above, plus
8	k	<i>m</i>	$\begin{array}{c} x, x + \frac{1}{2}, z \\ \bar{x} + \frac{1}{2}, x, \bar{z} \end{array}$	$ \bar{x}, \bar{x} + \frac{1}{2}, z \\ x + \frac{1}{2}, \bar{x}, \bar{z} $	$ \bar{x} + \frac{1}{2}, x, z \\ x, x + \frac{1}{2}, \bar{z} $	$\begin{array}{c} x + \frac{1}{2}, \bar{x}, z \\ \bar{x}, \bar{x} + \frac{1}{2}, \bar{z} \end{array}$		no extra conditions
8	j	<i>m</i>	$ \begin{array}{c} x, y, \frac{1}{2} \\ \bar{x} + \frac{1}{2}, y + \frac{1}{2}, \end{array} $	$ \begin{array}{c} \bar{x}, \bar{y}, \frac{1}{2} \\ \frac{1}{2} \\ x + \frac{1}{2}, \bar{y} + \end{array} $	$\begin{array}{ccc} \bar{y}, x, \frac{1}{2} \\ \frac{1}{2}, \frac{1}{2} \\ \end{array} \begin{array}{c} \bar{y}, x, \frac{1}{2} \\ y + \frac{1}{2} \end{array}$	$, x + \frac{1}{2}, \frac{1}{2}$	$ \begin{array}{c} y, \bar{x}, \frac{1}{2} \\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, \frac{1}{2} \end{array} $	no extra conditions
8	i	<i>m</i>	$\begin{array}{c} x, y, 0\\ \bar{x} + \frac{1}{2}, y + \frac{1}{2}, \end{array}$	$\begin{array}{c} \bar{x}, \bar{y}, 0\\ 0 \qquad x + \frac{1}{2}, \bar{y} + \end{array}$	$ \frac{\overline{y}, x, 0}{\frac{1}{2}, 0} $ $ \frac{\overline{y}, x, 0}{y + \frac{1}{2}} $), $x + \frac{1}{2}, 0$	$\begin{array}{l} y, \bar{x}, 0\\ \bar{y} + \frac{1}{2}, \bar{x} + \frac{1}{2}, 0 \end{array}$	no extra conditions
4	h	<i>m</i> .2	$m \qquad x, x + \frac{1}{2}, \frac{1}{2}$	$\bar{x}, \bar{x}+rac{1}{2}, rac{1}{2}$	$\bar{x} + \frac{1}{2}, x, \frac{1}{2}$	$x + \frac{1}{2}, \overline{x}, \frac{1}{2}$		no extra conditions
4	g	<i>m</i> . 2	$m \qquad x, x + \frac{1}{2}, 0$	$\bar{x}, \bar{x} + \frac{1}{2}, 0$	$\bar{x} + \frac{1}{2}, x, 0$	$x + \frac{1}{2}, \bar{x}, 0$	<u>.</u>	no extra conditions
4	f	2 . <i>m</i>	$m = 0, \frac{1}{2}, z$	$\frac{1}{2}, 0, z$ $\frac{1}{2}, 0, z$	\overline{z} $0, \frac{1}{2}, \overline{z}$			hkl : $h+k=2n$
4	е	4	0, 0, z	$\frac{1}{2}, \frac{1}{2}, \overline{z}$ 0,0,	$\overline{\mathcal{Z}}$ $\frac{1}{2}, \frac{1}{2}, \mathcal{Z}$			hkl : $h+k=2n$
2	d	<i>m</i> . <i>m</i>	$m = 0, \frac{1}{2}, 0$	$\frac{1}{2}, 0, 0$				hkl : $h+k=2n$
2	С	<i>m</i> . <i>m</i>	$m = 0, \frac{1}{2}, \frac{1}{2}$	$\tfrac{1}{2},0,\tfrac{1}{2}$				hkl : $h+k=2n$
2	b	4/m.	$.$ $0, 0, \frac{1}{2}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$				hkl : $h+k=2n$
2	а	4/m .	. 0,0,0	$\frac{1}{2}, \frac{1}{2}, 0$				hkl : $h+k=2n$
Syı	nme	etry of	special projections	í				

Hu, et al, Scientific reports 4 (2014), 7367

For M₅B₂ phase:

 $\begin{aligned} \mathsf{F}_{\mathsf{M5B3}} &= F_{4h}^{M} + F_{4g}^{B} + F_{2a}^{M} \\ &= 4(f_{M} * \cos \pi l + f_{B}) * \left\{ \cos[2\pi(h+k)x + k\pi] + \cos[2\pi(k-h)x + h\pi] \right) + \\ e^{\pi i (h+k)} [\cos[2\pi(k-h)x + k\pi] + \cos[2\pi(h+k)x + h\pi]] \right\} \\ &+ 4f_{M} * \left\{ 2 + 2e^{\pi i (h+k)} \right\} \end{aligned}$

□ For (hkl) with special cases k=l=0, namely types of (h,0,0) $F_{M5B3} = F_{4h}^M + F_{4g}^B + F_{2a}^M$ = 4($f_M + f_B$) * {cos 2πhx + cos[2π(-h)x + hπ]) + $e^{\pi i h} [cos[2π(-h)x] + cos[2πhx + hπ]]$ } + 4 f_M * {2 + 2 $e^{\pi i h}$ }

If h=even numbers, F=0; (reflection rule resulted from the screw axis 2¹ operation along [100] direction)

D5a-M₃B₂ boride: (M=Cr, Mo, Fe) Space group: No. 127, P4/mbm Lattice parameter: a=b=5.7 Å, c=3.0 Å Atomic locations: M: 4h, 0.173, 0.673, 0 M: 2a, 0, 0, 0 B: 4g, 0.388, 0.888, 0

□ For (hkl) with special cases h=0, namely types of (0,k,l) $F_{M5B3} = F_{4h}^{M} + F_{4g}^{B} + F_{2a}^{M}$ $= 4(f_{M} * \cos \pi l + f_{B}) * \{\cos 2\pi (kx + k\pi) + \cos 2\pi kx + e^{\pi i k} [\cos 2\pi (kx + k\pi) + \cos 2\pi kx]\}$ $+ 4f_{M} * \{2 + 2e^{\pi i k}\}$

If k=even numbers, F=0; (reflection rule resulted from the b glide reflection operation perpendicular to [100] direction)

Hu, et al, Scientific reports 4 (2014), 7367

Northwestern EXPLORING INNER SPACE **Extinction rule for space group of P4/mbm:**

Extinction rule at general positions:

 \Box For (hkl) with special cases k=l=0, namely types of (h,0,0)

If h=even numbers, F=0; (reflection rule resulted from the screw axis 2¹ operation along [100] direction)

 \Box For (hkl) with special cases h=0, namely types of (0,k,l)

If k=even numbers, F=0; (reflection rule resulted from the b glide reflection operation perpendicular to [100] direction)

Extincted reflection: (100),(300), (010), (030) Existed reflection: (200),(110), (120), (210)

(110) + (010) = (120) (110) + (100) = (210) Kinematics forbidden but occurred due to dynamically effect

[201]

D5a- M_3B_2 boride: (M=Cr, Mo, Fe) Space group: No. 127, P4/mbm

Lattice parameter: a=b=5.7 Å, c=3.0 Å

Northwestern

[100]

90°

001

Hu, et al, Scientific reports 4 (2014), 7367

[001]

Reflection rules for structure with various operation elements

NUANCE

Nanoscale Characterization Experimental Center

			Operation element			Symmetry direction/plane	Translation vector (t)	Reflection rule	
			Pure translation	Face centered	d F		$\frac{a+b}{2}, \frac{a+c}{2}, \frac{b+c}{2}$	(h, k, l) with h + k, k + l, and h + l = 2n	
				Body centere	d I		$\frac{a+b+c}{2}$	(h, k, l) with h + k + l = 2n	
				rhombohedra centered	II R		$\frac{2a+b+c}{3}, \frac{a+2b+2c}{3}$	(h, k, l) with -h + k + l = 3n	
					A		$\frac{b+c}{2}$	(0, k, l) with k + l = 2n	
				Side centered	d B		$\frac{a+c}{2}$	(h, 0, l) with h + l = 2n	
Operation elements		Translation vector (t)	Reflection rule			с		$\frac{a+b}{2}$	(h, k, 0) with h + k = 2n
Inversion	1 m			Screw axis (rotation + translation)	3-fold basis	3 ₁ , 3 ₂	[001]	$\pm \frac{c}{3}$	(0, 0, l) with l = 3n
Inversion					4-fold basis	4 ₁ , 4 ₃	[100]; [010]; [001]	$\pm \frac{a}{4};\pm \frac{b}{4};\pm \frac{c}{4}$	(h, 0, 0) with h = 4n; (0, k, 0) with k = 4n; (0, 0, l) with l = 4n
Reflection						4 ₂	[100]; [010]; [001]	$\pm \frac{a}{2}; \pm \frac{b}{2}; \pm \frac{c}{2}$	(h, 0, 0) with h = 2n; (0, k, 0) with k = 2n; (0, 0, I) with I = 2n
		Not Appliable	Not Appliable		6-fold basis	6 ₁ , 6 ₅	[001]	$\pm \frac{c}{6}$	(0, 0, l) with l= 6n
Rotation axis	2 , 2					6 ₂ , 6 ₄		$\pm \frac{c}{3}$	(0, 0, l) with l= 3n
						6 ₃		$\frac{c}{2}$	(0, 0, I) with I= 2n
	3, 3				Simple glide	а	(010); (001)	$\frac{a}{2}$	(h, 0, l) with h= 2n; (h, k, 0) with h= 2n
	4 . 4 . 6 . 6					b	(100); (001)	$\frac{b}{2}$	(0, k, l) with k= 2n; (h, k, 0) with k= 2n
	-, -, -, -					с	(100); (010)	$\frac{c}{2}$	(0, k, l) with l= 2n; (h, 0, l) with l= 2n
				Glide reflection (reflection + translation)	Diagonal glide	n	(100); (010); (001)	$\frac{b+c}{2}; \frac{a+c}{2}; \frac{a+b}{2}$	(0, k, l) with k + l= 2n; (h, 0, l) with h + l= 2n; (h, k, 0) with h + k= 2n
							(110)	$\frac{a+b+c}{2}$	(h, h, l) with l= 2n
						d	(100); (010); (001)	$\frac{b+c}{4}; \frac{a+c}{4}; \frac{a+b}{4}$	(0, k, l) with k + l= 4n; (h, 0, l) with h + l= 4n; (h, k, 0) with h + k= 4n
							(110)	$\frac{a+b+c}{c}$	(h, h, l) with 2h + l=4n

EXPLORING INNER SPACE

Thank you for your attention!

Contact Information: Email: <u>xbhu@northwestern.edu</u> Office: Tech Building Ground Floor JG14 Phone: 847-467-4992

