EDS Detectors and How They Work

Dr. Krysten Villalon – EPIC-SEM Core Scientist Nicholas Gogola – EPIC-SEM Asst. Core Scientist 2024

Outline

- Background
- EDS Detector Components
- EDS Detectors at NUANCE

EDS Background

What is EDS?

Energy Dispersive X-ray Spectroscopy

Secondary Electrons

Backscatter electrons

Characteristic X rays

Bremsstrahlung Radiation

Soft and Hybrid Nanotechnology Experimental Resource

Northwestern EXPLORING INNER SPACE

X-ray Analysis Techniques

	In	Out	Info
EDS	Electrons	X-rays	Elemental comp.
WDS	Electrons	X-rays	Elemental comp.
XRF	X-rays	X-rays	Elemental comp.
XRD	X-rays	X-rays	Crystal Structure
XPS	X-rays	Electrons	Elemental comp/Electronic State

EDS Detector Components

EDS Detector Assembly

EDS Detector Assembly

The Detector

1. Collimator

- A limiting aperture/cap
- So stray X-rays don't get detected

2. Electron Trap

- A pair of magnets that deflects away electrons
- It reduces background, minimizes artifacts, prevents sensor damage over time.

3. Window

- Protective barrier/film between crystal and environment.
- Prevents contamination on the sensor/crystal and helps maintain vacuum.

4. Crystal (sensor)

- (Si) Semiconductor
- Interacts with or "senses" the X-rays

Oxford Instruments

Windows

Туре

None

Be

UTW

ATW

Northwestern

Crystal (the sensor)

Valence Band

Crystal (the sensor)

Si(Li)

- Pell (1960) developed process to create detector crystal made to behave like intrinsic silicon.
- Li is highly mobile and can be diffused or "drifted" into Si.
- General idea:
 - Silicon: 4 valence e Boron: 3 valence e- (common impurity):
 Lithium : 1 valence e-
 - Si + B = extra holes, +
 - Si + B + Li = neutralized holes
 - Problems:
 - Liquid nitrogen needed to reduce thermal noise and Li diffusion

Crystal (the sensor)

Silicon Drift Detector

- Proposed in 1983 by Gatti & Rehak
- High purity silicon
- Pattern of nested ring electrodes with small central anode on backside.
- Less electrode and anode area, smaller path length, more uniform electric field.
 - More counts in less time, less noise, less cooling needed!

EDS Detector Assembly

Si(Li)

SDD

Liquid nitrogen ~ −200 °C Peltier Cooling ~ -20 °C

EDS Detector Assembly

Preamplifier

- converts the accumulated charge at the anode into a voltage signal.
- Field Effect Transistors (FETs) or Charge Sensitive Preamplifiers (CSPs)
- Sources of charge
 - Current leakage from applied bias
 - X-ray induced charge to be measured

orthwestern

EXPLORING INNER SPACE

EDS Detector Assembly

Pulse processing

- Digitizes the voltage input from the preamplifier
- Optimize and removes noise on x-ray signal
- Differentiates between events arriving at detector close together

Fig. 15. Measurement of steps on a voltage ramp by averaging differing numbers of measurements of the signal. (a) Short T_P permits all steps to be measured, but the variation of each measured step is large, so the X-ray energy is not measured accurately and peaks show poor resolution. (b) Long T_P means that some steps arrive too close together to be measured. However, noise averaging is better and therefore peaks show better resolution.

Multichannel Analyzer

Specific EDS Detectors at NUANCE

Hitachi S-3400	Hitachi S-4800	Hitachi SU8030	Quanta 650	JEOL 7900
OI INCA x-act	OI INCA x-sight	OI X-Max	OI ULTIM MAX	OI ULTIM MAX
SDD	Si(Li)	SDD	SDD	SDD
10 mm ²	30 mm ²	80 mm ²	40 mm ²	65 mm ²
130 eV	136 eV	127 eV	127 eV	127 eV

Soft and Hybrid Nanotechnology Experimental Resource

Northwestern EXPLORING INNER SPACE

Hitachi S-3400	Hitachi S-4800	Hitachi SU8030	Quanta 650	JEOL 7900
 Point & ID LayerProbe[®] Linescan Mapping 	Point & IDMapping	 Point & ID LayerProbe[®] Linescan Mapping 	 Point & ID Linescan Large Area Mapping 	Point & IDLinescanMapping
WDS	Cryo Stage	STEM	EBSD ESEM/Cold Stage Hot Stage	WDS STEM

Items to consider

- Size vs Solid Angle
- Energy resolution

Items to consider

- Size vs Solid Angle
- Energy resolution

Items to consider

- Size vs Solid Angle
- Energy resolution

Soft and Hybrid Nanotechnology Experimental Resource

EXPLORING INNER SPACE

Thank you!

Dr. Krysten Villalon

EPIC-SEM Core Scientist krysten.villalon@northwestern.edu Phone: (847) 467-0101

Nicholas Gogola

EPIC-SEM Assistant Core Scientist nicholas.gogola@northwestern.edu Phone: (847) 467-0101

Register for a virtual EDS training today!

