3D Characterization of Surface Topography (From mm to nm scale)

> Xinqi Chen Nuance Center Northwestern University

- 3D Optical Microscope (Optical Profilometer, Non-contact Profilometer, White Light Interferometry – WLI)
- Stylus Profilometer (Contact Profilometer)
- Atomic Force Microscope (AFM) (Scanning Probe Microscope)
- The Comparison of the Strength and Weakness

SEM? No quantitative height information

Bruker Contour GT Optical Profilometer (3D Optical Microscope)

Working Principle of Profilometer (Non - Contact Optical Profilometer)

- > A light beam is split, reflecting from reference (known/flat) & test material.
- Constructive and destructive interference occurs
- Forms the light and dark bands known as interference fringes.
- > The optical path differences are due to height variances in the test surface.
- Constructive interference areas as lighter and the destructive interference areas as darker.
- Light to dark fringes above represents one-half a wavelength of difference between the reference path and the test path.

From the above Interference Image:

- Lower portion is out of focus means less interference.
- Greatest contrast means best focus.

What does an optical profilometer measure?

Surface roughness Step height

INTERFEROMETRY MODE

- In PSI (Phase Shift Interferometry), a few z-shifts corresponding to known phase shifts are applied; they allow the surface to be reconstructed (smooth surfaces, samples with little roughness and steps < 120 nm).</p>
- In VSI (Vertical Scanning Interferometry), a vertical scan is performed and the fringe envelope is observed to find the maximum correlation between the waves or focus point (samples with roughness ranging from 50 nm to 1 μm, step heights greater than 120 nm).

Silicon wafer with etched pattern

Northwestern

Crater made from nanoindentation

Crater made from SIMS depth profiling

Northwestern University Atomic and Nanoscale Characterization Experimental Center

Stitching for mapping a big area

Northwestern University Atomic and Nanoscale Characterization Experimental Center

Optical Profilometer

Advantages:

- Great vertical resolution in the nm level
- Lateral resolution ranges from a few micrometres down to 100 nm
- High Speed for 3D characterization
- No damage on surface wear or scratch
- Stitching capability to increase the maximum characterization size

Limitation:

➤ Limited by very large slopes, where the light is reflected away from the objective, unless the slope has enough texture to provide the light.

Stylus Profilometer

Stylus (contact) Profilometer

The stylus profilometer provide repeatable, reliable, and accurate measurements- from traditional step height measurements and 2D roughness surface characterization to advanced 3D mapping and film stress analyses.

- A constant contact force is applied while the stylus moves laterally.
- The feedback controller lifts the stylus tip up or down to maintain constant force
- Tips are usually diamond. The tip radius dictates the lateral resolution.
- > Tip radius ranges from 50 nm to 200 microns (ours is 5 um)

Northwestern University Atomic and Nanoscale Characterization Experimental Center

Surface scratch

Very time consuming

Tip Radius and Convolution Effects

Radius of curvature of the tip defines the lateral resolution.

Not only leads to convoluted x,y
dimensions, can caused convoluted
depth... effects surface roughness

Features

- 3D topographical surface map rather than just traditional line scan
- Larger sample (up to 6 inches wafer) and longer scan (up to 55 mm)
- Vertical resolution I ångström
- Vertical Range 524 um
- Powerful and user-friendly software
- Stylus radius- 12.5 um, 5.0 um, 2.5 um

Data Information

- Step height
- > Roughness
- Curvature measurement
- Film stress measurement

Data Collected from Optical and Stylus Profilometer

Northwestern

Error from Optical Profilometer

Northwestern

Phase Change on Reflection

- Light, when reflected from materials, exhibits a phase change upon reflection
- ➤ Actual phase change is a function of the complex index of refraction: N = n ik
- > For a bulk material the phase change on reflection is given by:

$$\Phi(n,k) = TAN^{-1} \left[\frac{2k}{1-k^2-n^2}\right]$$

Correction for the offset caused by the dessimilar materials

- > Adjacent regions of dissimilar materials will have a constant offset due to difference in phase change on reflection
- > The offset can be calculated once the n and k are known for both materials

$$\Delta h = \frac{\lambda}{4\pi} \Delta \Phi = \frac{\lambda}{4\pi} \left[\Phi (n_1, k_1) - \Phi (n_2, k_2) \right]$$

AFM (Atomic Force Microscopy) SPM (Scanning Probe Microscopy)

- > Cantilever is driven at its resonant frequency by a piezo.
- The amplitude is monitored by laser deflection.
- Constant amplitude is maintained by adjusting the z piezo up or down.

AFM Mode

contact mode

Tip angstroms from surface (repelled) Constant force Highest resolution May damage surface

tapping mode

Intermittent tip contact Variable force measured Improved resolution Non-destructive

non-contact mode

Tip hundreds of angstroms from surface (attracted) Variable force measured Lowest resolution Non-destructive

Tapping Mode

- A cantilever with attached tip is oscillated at its resonant frequency and scanned across the sample surface
- A constant oscillation amplitude (and thus a constant tipsample interaction) are maintained during scanning.
 Typical amplitudes are 20-100 nm.
- Forces can be 200 pN or less
- The amplitude of the oscillations changes when the tip scans over bumps or depressions on a surface

The development of TappingMode[™] enabled researchers to image samples too fragile to withstand the lateral forces of Contact Mode and use scan speeds much higher than could be obtained in non-contact mode.

Microfabricated AFM cantilevers

 $Radius_{tip} \sim Inm to 20nm$

Only can be used for a few times

ZnS nanoparticles

P.Yasaei, et al "Spatial Mapping of Hot-Spots at Lateral Heterogeneities in Monolayer Transition Metal Dichalcogenides." Advanced Materials 1808244 (2019)

Y. Li et al, MoS2-capped CuxS nanocrystals: a new heterostructured geometry of transition metal dichalcogenides for broadband optoelectronics. Materials Horizons 6 (3), 587-594. (2019)

Piezo stage used for AFM

Motorized stage used for Profilometer

X and y translation precision Smaller range

Huge x and y translation range Poor precision

	Strength	Weakness
Stylus Surface Profiler (Contact profilometer)	Very fast and very easy (no setup and focus time, don't need changing tip) Vertical data are always reliable (no artifact) Huge vertical range (524 um) Great vertical resolution	Poor lateral resolution Contact mode, damage the soft surface Time consuming for 3D characterization
3D Optical Microscope (Optical profilometer)	Fast and easy Quick 3D characterization No contact, good for soft surface Great vertical resolution Better lateral resolution	Not work for low reflective surface Artifact is possible for dessimilar surface
Atomic Force Microscope (Tapping mode AFM)	Best lateral and vertical resolution Great for atomic layer film Great for soft surface	X,Y,Z range is very limited The tip should be replaced very frequently Setup and scanning take more time

Nanoscale Characterization Experimental Center

EXPLORING INNER SPACE

THANKS FOR YOUR ATTENTION

• QUESTIONS?

- <u>XCHEN@NORTHWESTERN.EDU</u>
- 847-491-5505

