Choosing the Best EPIC-SEM for Your Experiment

Tirzah Abbott – EPIC-SEM Facility Manager

Nick Gogola – Asst. Core Scientist

2023

SHANE Soft and Hybrid Nanotechnology Experimental Resource

Northwestern

Overview

Background	What is SEM and how does it work	
Electron Detectors	Image generation with different signals electron-specimen interaction	
SEM Modes and Techniques	Advanced imaging and microanalysis techniques	
SEM's at NUANCE	The different SEM's with strengths and weaknesses	

Background

Figure from MyScope.com

Soft and Hybrid Nanotechnology Experimental Resource

Gun

- --

Condenser Lens

Dbjective Lens

Northwestern University Atomic and Nanoscale Characterization Experimental Center

Soft and Hybrid Nanotechnology Experimental Resource

Northwestern

Experimental Resource

Nanoscale Characterization Experimental Center

BSE 30 kV X-ray un 9 Gold Carbon 8 µm 8 µm

SE

Secondary Electrons

SE1	Incident probe	Most surface sensitive, high res
SE2	BSE Leaving the sample generating SE	Low res, some compo information
SE3	BSE hitting walls of chamber	Noise

Backscatter Electrons

• Angles of elastic scattering range from 0-180 degrees

Steel sample (B) high angle BSE showing z contrast and (C) low angle BSE showing topography (photos from FEI)

Electron Detectors

- 1. Lower SE Detector (EHT detector)
- 2. In-Lens (upper) SE Detector
- Backscatter Electron
 Detector
- 4. STEM Detector
- 5. Others (Low Vac, etc.)

Northwestern

1. Lower Secondary Electron Detector

- Directional illumination due to detector geometry
- Rapid characterization of surface topography
 - Decreased signal at short WD (< ~10 mm)
- Reduced charging effects

Lower detector: ~ 40% SE3, 45% SE2, about 15% SE1 (and some direct BSE signal)

Northwestern University Atomic and Nanoscale Characterization Experimental Center

NOT HWE STERN UNIVERSITY ATOMIC AND Northwe Stern University Atomic and Nanoscale Characterization Experimental Center

Soft and Hybrid Nanotechnology Experimental Resource

Northwestern

2. In-Lens (upper) Secondary Electron Detector

- Signal Varying Mechanism detect both SE and BSE
- Higher resolution imaging
- Optimum performance at shorter WD (< ~10 mm)
- More uniform illumination than lower SE Detector

Upper detector: ~75% SE2 and 25% SE1.

Examples – upper SE

3. Backscatter Electron Detector

- More signal than energy filtered BSE for most electron energies
- More effective at showing compositional (Z) contrast
- Not as good at very short WD (< ~5 mm) or very low electron energies (~ < 3 keV)

Northwestern

Experimental Resource

Nanoscale Characterization Experimental Center

SEM Modes and Techniques

Variable Pressure	Beam Deceleration	X-ray
Mode (Low Vac)	Mode	Microanalysis
Electron Backscatter Diffraction	In-situ Heating and Cooling	Electron Beam Lithography (eBL)

Experimental Resource

Nanoscale Characterization Experimental Center

EXPLORING INNER SPACE

Soft and Hybrid Nanotechnology Experimental Resource

Nanoscale Characterization Experimental Center

- Reduces interaction volume while maintaining high resolution imaging
- Reduces affects of lens aberrations on low kV beam

Northwestern

X-ray Microanalysis

EDS

Energy Dispersive X-ray Spectroscopy

Si Kα = 1.740 keV Fe Kα = 6.405 keV

WDS

Wave

Wavelength Dispersive X-ray Spectroscopy

> Si Kα = 7.13 Å Fe Kα = 1.94 Å

Energy Dispersive X-ray Spectroscopy

Wavelength Dispersive X-ray Spectroscopy

Northwestern University Atomic and Nanoscale Characterization Experimental Center Soft and Hybrid Nanotechnology Experimental Resource Northwestern

Electron Backscatter Diffraction (EBSD)

Electron Backscatter Diffraction

Characteristics

Grain Size

Texture/CPO

Deformation

Soft and Hybrid 👃 Nanotechnology **Experimental Resource**

Northwestern EXPLORING INNER SPACE

Learn more

about EBSD

EXPLORING INNER SPACE

Experimental Resource

Nanoscale Characterization Experimental Center

In-situ Heating and Cooling

- Rapid heating and cooling (>100 C/min) of specimens up to several mm in size
- Can heat up to 950 °C
 - Resistance heating
- Excellent temperature control and data logging
- Imaging and EBSD holder

In-situ Heating and Cooling

Rapid Heat Treatment

Zou et al., 2020

(RHT)

Learn more about heating and Cooling

Electron Beam Lithography

SHANE Soft and Hybrid Nanotechnology Experimental Resource

Northwestern

Hitachi S-4800 and SU8030

S-4800	Both	SU8030
• 1.5kV beam decel.	cFEG electron gun	• 2.5kV beam decel.
Oxford INCA SiLi EDS system	 Double condenser optics 	 Oxford X-max 80 SDD EDS Detector
 Leica Cryo stage with VCT100 transfer system 	 In-Lens (upper) SE Detector and ExB filter 	 Additional Top (upper) SE Detector
	SE Detector (lower)	 Low kV STEM Detector
	Compucentric stage	
	 Vibration isolation table 	

Hitachi S-3400

- Tungsten filament electron gun
- Large specimen chamber (up to 8" diameter, 85 mm tall specimens)
- Compucentric stage
- ESED II Detector for low vacuum imaging
- 5 segment solid state BSE Detector with 3D reconstruction capability
- Oxford INCAx-act SDD EDS
- Oxford WAVE 500 WDS system

JEOL JSM-7900F

- Schottky Plus field emission gun with low aberration condenser lens
- Ultralow kV in-lens (upper) detectors
- GENTLEBEAM[™] Super High mode, up to 5kV beam decel.
- Super Hybrid (electrostatic) Lens (SHL) enabling magnetic material analysis
- High sensitivity retractable BSE detector
- Oxford Ultimax 65 SDD EDS Detector
- Oxford WAVE 700 WDS system
- Low vacuum mode
- Low kV STEM imaging

Quanta 650F

- Schottky field emission gun
- Standard SE (lower), SS concentric BSE (retractable), 2 gaseous SE, and gaseous BSE Detectors
- Large chamber and programmable stage with 6" wafer capacity
- Low vacuum mode up to 4000 Pa chamber pressure
- Oxford SDD EDS and EBSD system
- eBL setup including beam blanker, NPGS software, and integrated beam current measurement system
- Gatan Murano heating/cooling stage

Thank you!

Nick Gogola EPIC-SEM Asst. Core Scientist Nicholas.gogola@northwestern.edu Phone: 847-491-2993

Fill out our entry survey for SEM training

Learn more about heating and cooling

Learn more about EBSD

Learn more about WDS

