Direct Electron Detectors and their Application in (Scanning) Transmission Electron Microscopy

Paul J. M. Smeets

Research Assistant Professor EPIC Facility Manager FIB/TEM

Overview

• What is a Direct Electron Detector (DED)?

• Overview of DEDs in EPIC-TEM Facility

• Advantages for (S)TEM Applications

Features of the Ideal Detector for (S)TEM

- Respond to every electron (Quantum efficiency)
- Does not respond where the electrons are not (Low Noise)
- Know the position of these electrons (Spatial Resolution)
- Knows when the electron was detected (Temporal Resolution)
- Knows how many electrons arrived (Linearity / Dynamic Range)
- Energy of every electron
- Momentum of every electron
- Spin of electron
- ...

Traditional vs. Direct Electron Detection (DED) Camera

4.

Traditional scintillator camera (CCD or CMOS)

1.

2.

3.

4.

Traditional cameras use a **scintillator** to generate light that is transferred to a sensor and detected

e⁻ scatter in high Z scintillator e⁻ backscatter from fiber optic

Convert electrons to light

read-out to form image

Detect light and convert to signal

Electronically transfer signal and

Transfer light

- Scattering of light in fiber optic Distortions from fiber optic

Monolithic Direct Electron Detection camera

Direct detection refers to using a detector which is directly exposed to the e- beam to create a signal

- Convert electrons to light
- Transfer light
- 3. Detect electrons and convert to signal
- Electronically transfer signal 4. and read-out to form image

Northwestern

EXPLORING INNER SPACE

Performance of Traditional vs. DED Camera

- **DQE** is a function of sampling frequency, and is amongst others dependent on dose rate and accelerating voltage
- Nyquist frequency defines the max. spatial frequency (or minimal resolution) that can be measured by a detector. Minimal resolution = 2
 × pixel size
- For a perfect detector, DQE = 1 for all spatial frequencies

Electron Counting in a Direct Electron Detector

- Each electron strikes the sensor creating a cloud of charge that spans a few pixels
- The charge is collected in each pixel
- a complex "centroiding" algorithm reduces the multi-pixel charge to a single pixel

Direct Detectors in the EPIC-TEM Facility

GIF Quantum K2

G

4k by 4k electron counting camera

Dose fractionation mode for beam sensitive

Quantum GIF + K2 leverages the counting

capabilities of the K2 camera (EELS acquisition)

GIF Continuum K3 with Stela

• max. 1600 frames per second • K2 direct detection sensor

materials

K2 IS

- 200 kV/80 kV/60 kV
- Aberration corrected (probe)
- 0.08 nm STEM resolution
- 0.23 nm TEM resolution
- 0.35 eV energy resolution
- Dual SDD EDS detector (1.7sr)
- Simultaneous HAADF/BF/ABF
- Gatan Quantum Dual EELS (Updated with K2 direct camera)
- AXON drift-correction software

JEOL JEM-ARM300F (S)TEM

- 300 kV/80 kV/60 kV/40 kV
- 0.22 nm TEM / 0.19 nm STEM resolution
- K3 IS DED (Gatan)
- Stela Hybrid-Pixel DED (Gatan)
- Updated with GIF Continuum (Gatan)
- 0.29 eV energy resolution (300 kV)
- Simultaneous imaging by HAADF/BF/ABF
- SDD holder / delivery system
- Wide gap pole-EDS detector
- Hummingbird gas piece allows for wide variety of in situ experiments (heating, liquid, biasing, mechanical...)
- AXON drift-correction software

- Large (3456 x 3456) field of view
- max. 3000 frames per second
- Synchronize frames for 4D STEM applications via STEMx

Stela Hybrid-Pixel camera

- Hybrid-Pixel counting camera
- 4D-STEM & diffraction imaging at low kV
- 512 x 512 pixels
- > 16,000 fps
- High dynamic range for weak reflections

(S)TEM Techniques Benefiting from Direct Electron Detectors

(in situ) TEM Imaging

(in situ) EELS and EFTEM

Nanoscale Characterization Experimental Cente

(Selected Area) Diffraction, CBED & MicroED

Applications: (3D) crystal structure, Single CBED to measure specimen thickness, lattice strain measurements, point and space group determination, phonon structure, structure factor and charge density, etc.

(in situ) 4D-STEM

Applications: Virtual imaging, Orientation mapping, Strain mapping, Electric/magnetic field mapping, Phase Contrast Imaging (DPC, Ptychography), Fluctuation electron microscopy (medium-range ordering), Pair Distribution Function Mapping (short-medium range ordering etc.)

R.F. Egerton, EELS in the Electron Microscope, 2011

Specimen: Tylenol crystal Diffraction image size: 512 x 512 pixels Exposure per frame: 5 ms Tilt range: ±70° Total acquisition time: 3 s

DED advantage for Real Space Data Acquisition

• Examples using K3 IS

TEM Imaging

Zeolite

 $0.74 e^{-} Å^{-2} s^{-1}$ Dose Rate 25 e⁻ Å⁻² Total Dose

> Counting individual electrons allows you to collect highquality images at even lower doses and dose rates

I. Castano, A. M. Evans, R. dos Reis, V. P. Dravid, N. C. Gianneschi, and W. R. Dichtel. Chemistry of Materials 2021 33 (4), 1341-1352

Covalent Organic Frameworks (COFs)

Northwestern EXPLORING INNER SPACE

TEM Imaging – Ultralow Dose MOF

TEM reveals important local structural features of ZIF-8 crystals that cannot be identified by diffraction techniques, including **armchair-type surface terminations** and **coherent interfaces** between assembled crystals

ZIF-8 MOF Dose Rate: 1.02 e/pix/s; pixel 0.86 nm; 120 frames Zhu, Y. *et al. Nature Materials* **16**, 532–536 (2017)

In situ TEM – In Situ Staining Liposome

K. Gnanasekaran, B. Chang, P. Smeets, N. Gianneschi, Nano Lett. 2020, 20, 6, 4292–4297

Dose rate 0.2 e⁻ Å⁻² s⁻¹

In situ TEM – ARM300F (K3 IS)

Technique M	anage	r			•	ф	×
🕋 TEM li	magin	g					
In-Situ						-	
		Normal	In	-Situ			
K3 In-Si	tu Ca	amera				_	
0.5x 1x	2x	4x	3456	2048	1024	25	6
	Live		100.0	÷	%	ſ	
View	Fran	ne Time ∨	0.01331	÷	S	ľ	Q
Record	ا ھ 	ookback	10.0 s	Tir	neLapse		
Capture	Expo Fram	sure: <mark>0.133</mark> es: 10	s	vs vs	ave Stac ave Ima <u>c</u>	k je	
K3 Setup						×	1

K3 Setup		
Counted	CDS Mode	High Speed Mode
Average View Fr	ames, Numberto A	verage: 2
fps max	75.12	
Image Size	3456 x 3456	рх
Bit Depth		
File Size	11.39	MB
Data Rate	0.855666	GBps
Max Duration	648.05	min
Disk % Full	27 %	
	ок с	ancel

Nanoscale Characterization Experimental Cente

In situ TEM Data Acquisition

- Binning, camera size
- Frame time (max. 75 fps full-frame)
- **Lookback**: save to disk x s before any dynamic event

In situ TEM Data Player

- Amount of frames / time
- Change playback speed

In situ TEM Data Editor

- Cropping / frame averaging
- Drift correction using image registration (using imaging filters)
- Imaging filters
- Exporting video

 (adding scalebar, timestamp)

In Situ EELS

• In situ EELS showing the interaction between electron beam and gas molecules

Protochips Atmosphere 210 System attached on ARM 200CF

- Pressure range: 760 Torr (101.3 kPa) to 1 Torr (0.13 kPa);
- Flow range: 0.005 sccm to 1 sccm (ml/min);
- Temperature range: RT to 1000 °C with max 10 °C/s heating rate;
- Gas mixing: 0.01%-99.99% mixture of up to 3 non-corrosive gases;
- Vapor allowable: water, methanol, ethanol, hexane, naphtha, etc;
- Reaction gas Analyzer (RGA) attached

Drs. Kunmo Koo & Xiaobing Hu, in prep.

DED advantage for <u>Reciprocal Space Data</u> Acquisition

• Examples using Stela Hybrid-Pixel Detector

Stela Hybrid-Pixel Direct Detector (ARM300F)

Advantages

- Fast readout, with direct digitization
- Near zero read noise enables multi-pass frame summing
- Broad range of input count rates (high dynamic range; works also well at higher dose rates)
- Very sharp PSF at lower kVs

Limitations

- Physically large, small number of pixels
- Poor PSF at high kVs

Ideal for diffraction applications!

4D-STEM

Akshay A. Murthy, Paul Masih Das, Stephanie M. Ribet, Cameron Kopas, Jaeyel Lee, Matthew J. Reagor, Lin Zhou, Matthew J. Kramer, Mark C. Hersam, Mattia Checchin, Anna Grassellino, Roberto dos Reis, Vinayak P. Dravid, and Alexander Romanenko, ACS Nano 2022 16 (10), 17257-17262

Northwestern

EXPLORING INNER SPACE

(In Situ) 4D-STEM & EELS (Multimodal)

- On the **ARM300F** → EELS and 4D-STEM datasets from the same region can be obtained (Multimodal)
- Various SI Acquisition within the same software platform
- One sample, one microscope session, one data format

Multidimensional Electron Microscopy in the STEM: Scanning Diffraction and EELS Workshop https://www.youtube.com/watch?v=I2G1-t6bKKo

In Situ 4D-STEM & EELS (Multimodal)

- Heating experiment of Fe₂O₃·H₂O nanoparticles
- Cu(II) reduces to Cu(0) with temperature (EELS), crystal structure change from monoclinic to hexagonal

Temperature

Detector Performance

DED Matchmaker for the ARM300F

(S)TEM Technique	K3	Stela
EELS Mapping		
Low-kV EELS		
EFTEM imaging		
Low-dose imaging		
In-situ EFTEM		
In-situ EELS		
4D STEM / micro-ED		

- **Stela** High speed and high dynamic range ideal for diffraction imaging at low kV
- **K3** High sensitivity, large pixel count ideal for low-dose imaging and *in-situ* studies

Just Installed on the JEOL ARM200CF...

Ideal for 4D-STEM applications

Number of pixels (W x H)	192 x 192		
Active area (W x H) [mm²]	20 x 20		
Pixel size (W x H) [μm²]	100 x 100		
Sensor material	Silicon (Si) or high-Z		
Energy range [keV]	30 - 300		
Frame rate (max.) [Hz]	120,000		
Count rate (max.) [el/s/pixel]	10 ⁸	Sample	Sample
Detective Quantum Efficiency, DQE(0)	at 80 keV - 0.82 at 200 ke 0.75 at 300 keV - 0.75	eV -	
Detector mounting	Retractable		

SmB₆

Contact Info

2145 Sheridan Road Tech Institute, AB Wing #AG96 Evanston, Illinois 60208

www.nuance.northwestern.edu

Paul Smeets, PhD

Research Assistant Professor TEM/FIB Manager

Email: paul.smeets@northwestern.edu Phone: +1 (847) 491-7807

