Wavelength Dispersive X-ray Spectroscopy

Tirzah Abbott EPIC-SEM Facility Manager

Northwestern

Outline

- X-ray emission and detection with EDS in the SEM
- Introduction to wavelength dispersive x-ray spectroscopy
- WDS X-ray detection and Spectrometer
- Examples and available detectors and resources at NUANCE

Bremsstrahlung Radiation

Si Kα = **1.740 keV** Fe Kα = **6.405 keV**

Electron Beam

Generating X-Ray Signals

Northwestern

Remove backgrounds for trace elements

background

- Lower than 0.1 wt% (1000 ppm) almost impossible with EDS
- Background is greater in denser materials

Improve spectral resolution to separate peak overlaps

kV

Detection Limits

What is Wavelength Dispersive X-ray Spectroscopy?

- X-ray microanalytical technique used in SEM (EPMA)
- Utilizes Bragg's law of x-ray diffraction (W instead of E)
- Detection limit 10x lower than EDS (0.01 wt%)
- Measures one element at a time with high spectral resolution (2-20 eV)
- Analysis of minor and trace elements and separate peak overlaps
- Point analysis
- Standard based analysis

Analyzes one element at a time

Diffraction Crystals

Analyzes a spot – sample stationary

Johann Crystal

Imperfect Convergence Low sensitivity and low resolution

Johansson Crystal

Perfect Convergence High sensitivity and high resolution

E = 12.396 / λ

E = energy (keV) λ = X-ray wavelength (Å)

- Multiple crystals needed to span the energy range of elements
- Lattice spacing of the crystal determines energy range
- WD detectors contain many crystals

Crystal	2d (nm)	Energy Range (keV)	Element Range (K Line)	Crystal Geometry Type	Optimized Element	
LSM200	19.7	0.07 - 0.22	Be to B	Johann	В	
LSM-80	7.8	0.17 - 0.56	B to O	Johann	C and N	
LSM-60	6.0	0.22 - 0.73	C to F	Johann	0	
ТАР	2.575	0.52 - 1.70	O to Al	Johansson		
PET	0.8742	1.54 - 4.99	Si to Ti	Johansson		
LiF	0.40267	3.33 - 10.84	Ca to Ge	Johansson		

Crystals

Entrance slit

- Smaller increased spectral resolution
- Wider more x-ray counts

Sealed Proportional Counter (SPC)

- Sealed Xe gas
- Performs best with high Energy X-rays (>Fe Kα)

Flow Proportional Counter (FPC)

- Flowing P-10 (10% CH₄ balance Ar)
- Performs best on low Energy x-rays (<Fe Kα)

что Gas

Gas Proportional Counters

The Effect of X-ray Energy Overlaps on the Microanalysis of Chevkinite (Ce, La, Ca, Th)₄(Fe²⁺, Mg)₂(Ti, Fe³⁺)₃Si₄O₂₂ Using SEM EDS-WDS

Lacinska et al., 2021

WD Quantification

Northwestern

Compositional Analysis

Mean Atomic Mass (Z)

- Backscattering BSE do not generate x-rays
- Stopping power

Absorption (A)

Fluorescence (F)

 X-ray traveling through sample has energy E_x > E_c of element B

Matrix Effects

Northwestern

Quantitative WDS (and EDS!)

- Flat
- Homogenous
- Beam stable
- Good standards
 - As much like you sample as possible so they have similar matrix effects

Applications

- Materials science
- Metals and alloys
- Geology and petrology
- Aerospace automotives
- Energy generation and storage
- Life sciences
- Semiconductors

	Olivine analysis		Element wt.%									
			Si	Fe	Ni	Mn	Mg	Ca	0	Total		
Published EPMA	Electron microprobe $\frac{Aven}{1\sigma}$	Average	16.87	25.90	0.03	0.42	18.25	0.02	38.79	100.28		
data		1σ	0.085	0.396	0.011	0.021	0.211	0.008	0.172	0.474		
Data collected with AZtecWave	SEM WDS-only	Average	16.79	25.39	0.04	0.43	18.56	0.01	38.75	99.97		
		1σ	0.327	0.309	0.014	0.027	0.310	0.004	0.268	0.487		
	SEM EDS+WDS	Average	17.02	25.24	0.04	0.43	18.14	0.01	38.69	99.57		
		1σ	0.059	0.320	0.014	0.027	0.204	0.004	0.118	0.201		

EPMA reference - Gardner, R.L., Piazolo, S., Daczko, N.R. and Trimby, P., 2020. Microstructures reveal multistage melt present strain localisation in mid-ocean gabbros. Lithos, 366, p.105572.

From Oxford Instruments

- EDS for major
- WDS for minor
- WDS is a longer analysis, so only use it for trace elements or peak overlap makes it faster!

Example quantitative results obtained for a ref. glass standard with elements <0.2 wt. %: (Un-normalised analytical totals, oxygen calculated by stoichiometry)

Element	0	Na	Mg	AI	Si	s	к	Ca	Ti	Fe	As	Ba	Total
Reference (wt. %)	46.1	9.44	0.16	1.46	33.22	0.05	1.67	7.64	0.008	0.03	0.02	0.11	99.9
Technique	Cal.	EDS	WDS	EDS	EDS	WDS	EDS	EDS	WDS	WDS	WDS	WDS	-
Ave. (wt. %) (4 points)	46.02	8.86	0.154	1.51	33.46	0.033	1.58	7.43	0.008	0.028	0.020	0.085	99.2
1σ	0.08	0.09	0.004	0.03	0.06	0.002	0.01	0.07	0.001	0.001	0.001	0.011	0.2

From Oxford Instruments

JEOL JSM 7900F OI Wave 700

LSM-200	Be to B
LSM-60	C to F
ТАР	O to Al
PET	Si to Ti
LiF	Ca to Ge

Hitachi S-3400 OI Wave 500 LSM-80 B to O TAP O to Al

PET

LiF

Si to Ti

Ca to Ge

EPIC has a metals and minerals standard block – it is always better to have a standard like your sample!

WDS at NUANCE

Thank you!

Thank you, Rosie Jones from Oxford Instruments

Tirzah Abbott SEM Facility Manager

Tirzah.abbott@northwestern.edu

