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Sample Preparation is Key for Perfect (S)TEM Data

Sample IN

BSE
Light
(CL)

Auger
electrons

Secondary TEM specimen

electrons

Elastic scattering
(Diffraction)

Inelastic scattering (EELS)

What makes a good High-Quality TEM Sample?

ﬁrea < 3mm to fit into holders %ery thin (€100 nm) Large flat electron transparent regionJNo additional/foreign artifacts %\Io contamination
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Sample Preparation is Key for Perfect (S)TEM Data

Garbage Garbage
S IN (S)TEM DefOUT
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TEM Sample Preparation & Classification

Everything in a solid state can be prepared as a TEM sample

3 mm

Bulk Sample cut grind/polish  punch disk dimple ion milling

1) Shape sample to 3 mm disc &
polish/dimple/ion mill until
electron transparent (typically <
100 nm)

2) Crush into powder, disperse into
solvent (typically alcohol) and
transfer to TEM grid

3) Electrochemically polish

4) Perform FIB-SEM liftout

N UANCE Northwestern
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TEM Sample Preparation & Classification

Everything in a solid state can be prepared as a TEM sample

Bulk Sample Thin Film/Region of Interest

1) Shape sample to 3 mm disc &
polish/dimple/ion mill until
electron transparent (typically <
100 nm)

Identify desired orientation, typically
cross-section of plan-view

1) Prepare as bulk sample (mechanical
thinning) ensuring correct orientation
of imaging plane

2) Crush into powder, disperse into Cross-section

solvent (typically alcohol) and
transfer to TEM grid

2) Perform FIB-SEM liftout
3) Electrochemically polish

4) Perform FIB-SEM liftout

N UANCE Northwestern
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TEM Sample Preparation & Classification

Everything in a solid state can be prepared as a TEM sample

Bulk Sample

1) Shape sample to 3 mm disc &
polish/dimple/ion mill until
electron transparent (typically <
100 nm)

2) Crush into powder, disperse into
solvent (typically alcohol) and
transfer to TEM grid

3) Electrochemically polish

4) Perform FIB-SEM liftout

NUANCE
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Thin Film/Region of Interest

Identify desired orientation, typically
cross-section of plan-view

1) Prepare as bulk sample (mechanical
thinning) ensuring correct orientation
of imaging plane

2) Perform FIB-SEM liftout

Powders, NPs & Fibers

Either:

1) Disperse onto a supporting film
or grid

2) Compress/embed in epoxy (bulk
sample workflow), or
microtome

3) In certain cases: Perform FIB-
SEM liftout

Northwestern
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FIB-SEM DualBeam Capabilities @ NUANCE

TEM Sample Automated TEM
Helios Nanolab EISRaEHan JIB-4700F Sample Preparation

600 DualBeam MultiBeam

STEM Imaging £

lon Beam
Lithography

ThermoFisher
SCIENTIFIC

3D EBSD and \_ _4
EDS

Nanoprobing
& Manipulation \

Atom Probe Tomography
Preparation

Atom Probe mgraphy
Preparation

N UANCE “Swiss Army Knife” Northwe Stern
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FIB-SEM DualBeam Capabilities @ NUANCE

i U2 RN Automated TEM
Helios Nanolab et JIB-4700F Sample Preparation

600 DualBeam MultiBeam
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FIB-SEM DualBeam Fundamentals
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Formation of a Focused lon Beam — Ga* LMIS

H LowSerportire o sourve Y oo  |He Liquid Metal lon Source — Why Ga*?
T [ e I Liquid Metal and =% S i . . .
B0 SREEATIon e S Aloylon source  |ismliuell N[O | F [9 * Low melting point/vapor pressure = vacuum compatible
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Cs|Ba| ™ |Lu|Hf|Ta| W |Re|Os| ir | Pt|Au|Hg| Ti | Pb|Bi|Po|At|Rn ° Smgle ion species Ga*
[ IER AN LE) GO0 g D) ey U UonUouUGE g * No diffusion/reaction with W tip
*Lanthanide series il kGG R G G A GG R
La(Ce| Pr|Nd|Pm|Sm|Eu|Gd|Th Dz Ho | Er Tm{\'b
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5 [No | Pu|am|cm| ik | €1 | = | i s No N 4
Tungshen Neadia
. . . Winia! Soume

Pure Ga metal is heated to liquid at >30°C o

‘ and wets tip of W needle
. . . . . Ligwd Mafal
Electric field pulls liquid Ga into sharp
cone | a

Entvacid Eweiroas

 Cone tip field emits Ga*ions WY Taylor Cone
e Accelerated 1keV — 30keV typically,
focused by electrostatic lenses - -

Exfrachan Elachioda

N U AN CE ttpss//wwworsayphysics.com/what-is-fib Northwestern
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SEM and FIB Image Formation

Signal processing

P FIB-SEM

52 or 53°

Image Formation

N UAN CE Northwestern
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lon Bombardement
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lon Bombardement

e

M

sputtering’

{

{

milling’



“High Voltage”

Professional soccer player
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lon Bombardement

“High Voltage”
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FIB-Sample Interaction — Effect of keV and Current

Influence of altering Accelerating Voltage .

Influence of altering Current

Increase keV Increase current

1 keV Galllum 30 keV Galllum

"+ 500 &

10 keV Galllum

1 keV Galllum

10 keV Gallium 30 keV Gallium
'+ 500 4 +500 4 5004 + 5004 T '+ 500 A
_ Depth vs. Y- Ams Depth vs. Y- Ax1s Depth vs. Y- AxlS _ Depth vs. Y- Axns Depth vs. Y- Ams . Depth vs. Y- Axls
_i ’i >; v
K 2 H
5004 1 1 1 1 I \ | 5004 1 1 \ \ | i i i i i i i I-Jsomﬁ . , , ) i \ i 1 ! ! . - 500 i ' . : 1 i
0A — Target Depth — 1000 A 0A — Target Depth — 1000 A 0A _ Target Depth — 1000 A A ~ Target Depth — 10004 0A — Target Depth — 10004 0A _Target Dept — 1000 A
10 nm 30 nm

TRIM simultations - Stopping and Range of lons in Matter (SRIM) 2013
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Why can’t Electrons Sputter Atoms?

* Gais much heavier (mg,/m,_ = 1.27 E5) = much more momentum

* Gais much, much larger than an electron Incident Sputtered
Gaion material
® e @

>
\

\ -y &
~ - Sample

surface

& &
e / \/ o ®
" O o ®
I . 100 nm > / \
® @ Interstitial <
atom
Implanted @
Ga ion
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FIB-Sample Interaction — Material Dependent Penetration Depth
30 keV Ga*

'+ 500 A

I I I I+500A I I I I I \+500A I I I I I \+500A I I I I I
Depth vs. Y-Axis N Depth vs. Y-Axis . Depth vs. Y-Axis 20 Depth vs. Y-Axis i

Si _
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o o
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\+500A [ [ [ — I+500A [ [ [ [ [ = \+500A I I I I I ‘+500A [ [ [ [ —

Depth vs. Y-Axis i Depth vs. Y-Axis Depth vs. Y-Axis i Depth vs. Y-Axis J

| |Ni
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Stopping power is highly correlated with density and materials properties such as melting T; not directly with atomic number

N UA NCE TRIM simultations - Stopping and Range of lons in Matter (SRIM) 2013 Northwe Stern
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FIB-Sample Interaction Depth — Control with Voltage & Angle

* Combination of low voltage and high angle minimizes ion

= penetration depth
E, 20 -
:‘é 15 - Al  ~80-90 is optimal and nearly equivalent
:;‘- — 5 keV
§ [~=-a Al * Especially important for final thinning of TEM Sample
' 5 e Y —
0

0 2° x keV Gat*in Ni

~12nmat30keV [Ji ~6nmat10keV |} ~2 nm at 1 keV

N UA NCE Bassim, N., Scott, K., Gianuzzi, L.A., MRS Bulletin, 39 (2014) Northweste rn
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TEM Sample Preparation using FIB-SEM

N UANC Northwestern
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Processes used in Site-Specific TEM Sample Prep

 SEM and FIB Imaging
* Deposition: Solid protection layer of ROl using a Gas Injection System (GIS)
* lon Milling: Bulk material removal & sample thinning

* In Situ Liftout of TEM Lamella using W micromanipulator

« Attachment of lamella to a TEM (half)grid S LA
— @Grids can be made from various materials: Cu, Mo, Au, Be, Si, Ni... 'nnlpruhi'

SEM Image

. — - v ¢ o
. R e R 5 Fa X ?
mag B HV curr | il de| WD det Opum mag WD det Opum mag HV curr | tilt mode| WD det 10 um n / curr | tilt W frame | det 10 ym
3500 x|5.00kV (1.4 mm |[ETD 3 500 x | 5.00 k\ 3.9 mm |[ETD 3500x 500kV|14nA|0°] SE |39 mm|ETD 2 kV|93 pA|0°|16.4 87 ms | ETD
l

Northwestern University Atomic and
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FIB-Sample Interaction — Control Processes with Current

e Ga FIB has Gaussian shape
o Lower current narrower beam distribution (higher spatial res)

o Higher current broader beam distribution (lower spatial res)

* Lower current for precise milling; higher current for faster milling

* Control of currents through aperture selection

=
=

=
o

imaging & deposition /
thinning / liftout
A A 0135
( Y \ W 0 | Radial Position
Beam number | (/]! 02 03 04 05 06 07 08 09 10 11 12 13
"I 90,000 50,000 30,000 10,000 3,000 1000 500 300 100 30 10 3 =1

=
e

Relative Intensity

(rough) milling

=
P~

®
NUANCE Northwestern
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Deposition using GIS

* Solid material deposition at site-specific location through precursor gas injection

* Through e-beam or i-beam interaction with the surface, adsorbed molecules decompose into volatile
fragments carried away by vacuum system, and a metallic deposit remains

e Gas source needs to adsorb readily on surfaces and decompose faster than it sputters away
 UsuallyPt, WorC

Focused electron beam

GIS
== CHs
Decomposed gas l
¢ H3C-Pt-CH,
D I
- ] . CH3
o9 9 8’ Focused ion beam (Ga’)
e © d" Platinum: Tungsten: Carbon:
@ s 89 ° 000 Biganicmenat Trimethyl{methylcyclopentadienyl) platinum(IV) Tungsten Hexacarbonyl Phenanthrene
@ P CsH4CH5Pt(CHs)s W(CO), CHy

g ! molecules

Substrate

N UANCE Northwestern
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Stave 0° il Eéé TEM Sample Prep: Conventional TEM Lamella
age [ ng

B

s Injection System (Gls)

 5.0kV x2,000 10pm

i) Electron beam-assisted Pt deposition (Pt edep)

!N UANCE 5 kV, 10 pA = ~300 nm Pt layer Northwestern

Northweste EXPLORING INNER SPACE 22



stage 53-tit 1 EM Sample Prep: Conventional TEM Lamella

SEM image FIB image

9:0kV . . x2,000 10um ; 30.0kV x2,000 10pm  2020M11/13

ii) lon beam-assisted Pt deposition (Pt dep)

lN UANCE *30 kV, 30 pA = ~1 um Pt layer NorthweStern
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stage 53" titt | £V Sample Prep: Conventional TEM Lamella

9
&
&
&
Q

FIB image

5.0kV x2,000 10pm 30.0kV x2,000 10pm 2020/11/13

iii) Bulk out (x2)

'NUANCE 330KY) 615 nA Northwestern

\‘\ Northwestern University Atomic and
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thges3oti.t TEM Sample Prep: Conventional TEM Lamella

sputtered
particles

SEM image FIB image

5.0kV %2.000 10pm ‘ : 30.0kV x2,000 10pm 2020/11/13

iv) Clean-up edges (x2)

N UANCE *30 kV, 3 nA—> ~1.5 pm thick lamella NorthweStern

\\ Northwestern University Atomic and 25
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\?qgeooti.t TEM Sample Prep: Conventional TEM Lamella

SEM image FIB image

5.0kV x2,000 10pm 30.0kV:  x3,500 " ESHm . 2020/11/13

lN UANCE *30 kV, 3 nA Northwestern
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Stage 0° tilt TEM Sample Prep: Conventional TEM Lamella

SEM image FIB image

9.0kV x16,000 - .l o Tum  2020/11/113

vi) Weld Omniprobe to sample

*30 kV, 30 pA = ~0.2 pm Pt layer Northwe Stern
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sageoctit 1 EM Sample Prep: Conventional TEM Lamella
K

X
S
%
O/.
%
%
%,
3.

5

sputtered
particles

SEM image FIB image

5.0kV x5,500 2pm

Northwestern University Atomic and

Nanoscale Characterization Experimental Center EXPLOR’NG J'NNER SPACE 2 8

NUANCE *30 kV, 3 nA Northwestern



sageotit 1 EM Sample Prep: Conventional TEM Lamella

Z,
e
C,
\%

%,

o)

%
%
5.
i
%
y

SEM image FIB image

5.0kV x4,300 Sum

viii) Liftout using Omniprobe

! *30 kV, 30 pA Northwestern
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TEM Sample Prep: Conventional TEM Lamella

Stage 0° tilt

SEM image FIB image

Doz

X600  20pm | 30. X0 ;u % ...,2011 i

ix) Omniprobe approach to TEM half-grid (Cu)

N UANCE 301V, 30 pA Northwestern

Northweste EXPLORING INNER SPACE 29



TEM Sample Prep: Conventional TEM Lamella

SEM image FIB image

ix) TEM Lamella attachment to TEM half-grid (Cu)

lN UANCE *30 kv, 30 pA Northwestern

Northweste sity Atomic an

o Grarmateriation Exparimontal Cantsr EXPLORING INNER SPACE



TEM Sample Prep: Conventional TEM Lamella

o .
Stage 53" tilt
Ele
\ &/
&
.
< /00:
. ’-‘s
' Lo
rl Q’ ™ S 4

SEM image FIB image

5.0kV x7,000 2uym 30.0kV x7,000 2um  2020/11/13

x) Trim lamella (x2)

l *30 kV, 500 pA Northwestern
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TEM Sample Prep: Conventional TEM Lamella

Stage 53° tilt '

SEM image FIB image

5.0kV x7,000 2pm 30.0kV x7,000 Z2um  2020/11/43

xi) Mill window (x2)

!N UAN CE 30k, 500 pA Northwestern
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TEM Sample Prep: Conventional TEM Lamella
SEM image ) FIB image

5.0kvV x7,500 2pm  2020/11/13

53° - 1.5" tilt

5.0kV X7,500 2pm  2020/1113

xii) Low energy window milling (x2)

N UANCE +5 4, 50 pA Northwestern
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TEM Sample Prep: Conventional TEM Lamella

SEM image FIB image
53° + 2.50 tilt . - B

53° - 2.5° tilt

3.0kV x7,000 2uym  2020/11/13

xiii) Low energy window cleaning (x2)

N UANCE 3k, 30 pA Northwestern
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TEM Sample Prep: Conventional TEM Lamella

SEM image
53° tilt

Y :0.036 um

Electron transparent window

~5 by 1pum

36 nm thick lamella

5.0kV x20,000 1um : x22,000

xiv) Final lamella imaging

N UANCE +5 kY, 20 pA Northwestern
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TEM Lamella — Electron Transparency and Thickness

5 keV 2 keV

~350 nm ~80 nm ~30 nm

 Heavier elements become electron transparent at smaller thickness

N UAN CE Northwestern

EXPLORING INNER SPACE 34
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100nm vs. 40nm Thick Lamella

100 nm 40 nm

Northwestern University Atomic and

Nanoscale Characterization Experimental Center EXPLOR’NG J'NNER SPACE

N UANCE Northwestern



TEM Sample Prep — From Hard to Soft Materials

meteorite

enamel

15.0kV 4,000 5pm B0,0KVAS X 4)000) B 20241 0B/40}

x5,000 5um 30.0kV x5,500 2pm

curr | tiit | mode| V Vi ——3um—
X 1.4 1/ SE |4 2 00 k! A0 mm |ETD

HYBRID

Northwestern University Atomic and

Nanoscale Characterization Experimental Center EXPLOR’NG J'NNER SPACE 3 5
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Mg?” Exotic shape TEM sample prep

Ca,4(PO,)s(OH),
STEM imaging EDS acquisition

% Mg
pure HAp (nom)

Normalized1

Cu
M

g
p “ML}J:WMM 1.

1
Energy (keV)

curr | det ftilt [ WD mode

p— ~ Cy
166 mim | 729 s 10003 x[S.00kV [1.4nA ETD 52°/40mm SE 1'2 at (Y Mg

Ao
Ectoplasm
N\

Endosymbiotic
microaighe

Y B A

g curr | tilt |mode WDJ'd;t e T — mag | HV curr mod WD det 1 [0 — sfe,| Mag B HV curr | tilt B
SE [8.4mm |ETD| *|8000x |500kV|[1.4nA[52°| SE |3.8mm|ETD 3500x|5.00kV[1.4nA|52 SE /3.8 mm |ETD Ys® | 5000 x 130.00 kV[2.8 nA[0 °[16.5 mm[117 ms|ETD

NUANCE Northwestern

2500x5.00kV|14nAl0°

mag B| HV | curr |[tilt (mdde WD deﬂ' i . mag @| HV

Northwestern University Atomic and
Nanoscale Characterization Experimental Center
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Lamella Orientation through Omniprobe Rotation

75N\

Omniprobe rotation

l Northwestern

Neoasale Ghares EXPLORING INNER SPACE 39



Common Problems & Artifacts

* General FIB-SEM artifacts in TEM sample prep
— lon Implantation
— Redeposition
— Curtaining
— Amorphization
* Artifacts specific to TEM sample thinning

— Lamella bending

— Hole formation in lamella

N UANC Northwestern
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General FIB-SEM Artifacts - Redeposition

e Sputtered material can deposit nearby

* Dependent on energy of sputtered
particles and their sticking coefficient

* Limits milling of deep and narrow
features (milling rate approaches
redeposition rate)

* Mitigate through 1) lowering ion
current, 2) changing milling geometry,
3) angle

N UA NCE Giannuzzi and Stevie, Introduction to Focused lon Beams, page 33, Springer (2005) Northwe Stern
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General FIB-SEM Artifacts - Curtaining

* Appears as vertical streaks in image (classic theatre
curtain)

 Mechanism: Created by spatial variation of sputter
rate (ion beam gets deflected by tilted faces
modulating local dose)

* Porous materials, rough surfaces, composites of
hard/soft materials

e Mitigate through 1) hiding it (BSE or postprocessing)
2) thicker deposition layer 3) lowering current 4)
backside TEM sample milling 5) stage rocking

AN
DY

N UA NCE Reuteler, J. FIB artifacts and how to overcome them, ETH Zurich (2016) Nor thwe Ste rn
Northwestern University Atomic and S i e 44

C

Nanoscale Characterization Experimental Center EXPLOR’NG ’NNER SPACE



General FIB-SEM Artifacts - Amorphization

* Damagein Si

e Reduce thickness of
amorphous layer:

— Low kV
— Lower angle
30 ”
"""" ... 30 keV
25 4
£
@ 10°
a2 15 | 1
le ®
& .
1 TR :
8 f= == _Skev Foondd
0 . v .
0 20 40 60 80

Incident Angle (degrees)

N UA NCE Kelley, R, Microsc. Microanal. 19, 862-863(2013) Northwe Stern

\\‘ Northwestern University Atomic and 45
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TEM Prep Specific Artifacts — Lamella Bending

‘flag” with
multiple
windows

* Lamella may bend at various thicknesses dependent on sample
material

» Mitigate through 1) lower FIB current/voltage milling 2) minimize
beam dwell time 3) use a different lamella geometry and/or attach
lamella differently to the TEM grid

{NUANCE ~ Northwestern

Northwestern University Atomic and
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TEM Prep Specific Artifacts — Holes

e Porous samples may be
problematic for liftout —
holes may widen

* Holes may contribute to
other lemalla defects, such
as bending/curling, or even
destroying the ROI

 Mitigate through 1) lower
FIB current/voltage milling
2) minimize beam dwell
time 3) use a different
lamella geometry 4) leaving
final lamella a bit thicker

N UANCE Northwestern
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Take-away Messages

* Sample preparation is crucial to (S)TEM characterization

 FIB-SEM is a great tool in the (S)TEM sample prep arsenal to site-specifically prepare samples at
various orientations for a wide range of materials

 TEM lamella preparation is not only science, but a form of art

. ag H - i ode| W (e 20 pm ma curr ] mode| WD det
2000x|500kV|{1.4nA|52°| SE [3.9 m 200x |5.00kV[1.4nA|53°| SE [4.0mm|TLD

lN UANCE Northwestern

Northwestern University Atomic and EXPLOR’NG ’NNER SPACE 48
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1 kV

 NUANCE

Northwestern University Atomic and

| Nanosme Chacsreczation Srparmancal Canter

) m

NUANCE

Northwestern University Atomic and
Nanoscale Characterization Experimental Center

Questions

Northwestern University Atomic and
Nanoscale Characterization Experimental Center

INUANCE

2145 Sheridan Road
Tech Institute, AB Wing #AG96
Evanston, Illinois 60208

www.nuance.northwestern.edu

Paul Smeets, PhD
Research Associate & TEM/FIB Manager

paul.smeets@northwestern.edu
Office 847-491-7807

ilortawes
fanoscate Characresizationa ©Xg
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