THIN FILM MEASUREMENTS AT NUFAB

Ying Jia

Sung Oh Woo, Ph.D. Research Associate

Phone: (847) 491-4497 Email: <u>sung.woo@northwestern.edu</u> Office: FG71 Tech

Outline

- Available equipment at NUFAB
- Working principles and limits
- Parameter comparison
- How to choose an equipment

Thin film characterization

- Thickness
- Optical constants, n & k
- Roughness
- Mechanical properties, e.g. stress
- Electrical properties, e.g. sheet resistance

Available equipment at NUFAB

EXPLORING INNER SPACE

Two major categories

Mechanical – usually contact

AFM, profilometer

Optical - noncontact

Optical profilometer, ellipsometer, reflectometer

Mechanical methods

Measures

- 1. Thickness, roughness
- 2. Mechanical properties
- 3. Not optical properties

Pros:

- 1. Signal reliable
- 2. Regardless film optical properties

Cons:

- 1. Signal to noise ratio measurement setting tuning
- 2. Requires a step to measure film thickness
- 3. Contact measurement (except AFM noncontact mode).
- 4. Relatively slow measurement, especially for mapping

https://www.bruker.com/en/news-and-events/webinars/2020/an-overview-of Northwestern Ref: https://www.youtube.com/watch?v=2scVWMopjvQ

surface-roughness-measurements-choice-of-technique-and-analysis.html

EXPLORING INNER SPACE

	Profilometer Dektak	AFM Bruker Edge	
Measured properties	Thickness, roughness, stress	Thickness, roughness	
Thickness range	50 nm – 1mm	1 nm – 10 μm	
Height resolution	4~10 nm	sub nm	
Lateral measurement range/resolution	Range: < 8 inchRange: < 90 μmResolution: 5 μm		
Speed	Defined by user, typical: 0.5mm, 20 sec		

Optical methods

Measures

- 1. Thickness, roughness
- 2. Optical constants (except zygo)
- 3. Not mechanical properties

Pros:

- 1. Noncontact
- 2. High resolution
- 3. Fast
- Don't need a step to measure thickness (except zygo)

Cons:

- 1. Complex signal analysis,
 - usually involves modeling and fitting
- 2. Usually have material limits

Optical method 1: interference

Optical profilometer - Zygo

Compares incident and reflected light Measures surface topography with high resolution, fast and 3D mapping

Ref: https://www.zygo.com/support/technologies/csi-techology

	Optical profilometer zygo	Profilometer Dektak	AFM Bruker	
Working principle	Optical – interference	Mechanical	Mechanical	
Measured properties	Thickness, roughness	Thickness, roughness, stress	Thickness, roughness	
Thickness range	Sub nm - 1mm	50 nm – 1mm	1 nm -10 μm	
Height resolution	Sub nm	4~10 nm	Sub nm	
Lateral measurement range/resolution	Range: 3.3 x 3.3 mm ² without stitch, 8 inch with stitch Res. : 1 µm	Range: 8 inch Res. : 5 µm	Range: 90 µm	
Speed	Height dependent, Usually < 1min	Defined by user, typical: 20 sec for 0.5mm line scan		

Zygo limit

- 1. Eliminate the transmitted light ---- opaque films
- If transparent, separate the interferences
 ---- thick films, usually > 10 μm

Another interference measurement

Reflectometer - Filmetrics

Specially for transparent films

Pros:

- 1. Quick and easy measurement
- 2. Easy modeling

Cons:

- 1. Transparent or semi-transparent film
- 2. Known material, i.e. well characterized n&k

Ref: https://www.filmetrics.com/technology

Optical method 2: ellipsometry

Ellipsometer – J. A. Woollam

Measure the change in polarization after the light

Interact with the material

Pros:

- 1. Quick and easy measurement
- 2. High sensitivity, can measure films of 1nm
- 3. Works well with unknown materials

Cons:

- 1. Modeling may not be easy
- 2. Limited to transparent or semi-transparent films

Ref: https://register.gotowebinar.com/recording/4749616861388349199

	Reflectometer	Ellipsometer	
Measured properties	Thickness, roughness, n&k	Thickness, roughness, n&k	
Thickness range	15 nm – 50 μm	1 nm – 10 μm	
Lateral measurement range/resolution	Signal averaged over 3mm Dia.	Signal averaged over 3mm Dia.	
Material limit	Known, transparent or semi-transparent transparent		
Speed	< 1min	< 1min	

	Reflectometer / ellipsometer	Optical profilometer	Profilometer	AFM		
Working principle	Optical – interference /ellpsometry	Optical – interference	Mechanical	Mechanical		
Measured properties	Thickness, roughness Optical constants	Thickness, roughness	Thickness, roughness, stress	Thickness, roughness		
Thickness range	15nm – 50 μm/ 1nm – 10 μm	Sub nm - 1mm	50 nm – 1mm	1 nm – 10 μm		
Height resolution	1 nm, modeling matters	Sub nm	4~10 nm	Sub nm		
Lateral range /resolution	Average over 3mm dia.	Range: 8 inch with stitch Res. : 1 µm	Range: 8 inch Res. : 5 µm	Range: 90 µm		
Speed	~ 1min	Height dependent, Usually < 1min	Defined by user, typical: 20 sec for 0.5mm line scan			

Nanoscale Characterization Experimental Center

 $\nabla \Lambda$

EXPLORING INNER SPACE

Example cases

Q1: Measure photoresist thickness

A1: profilometer - Dektak (preferred) or reflectometer

Q2: Measure etching depth

A2: If photoresist is still there, use profilometer-Dektak. If not, profilometer-Dektak or optical one -zygo

Q3: Measure a PECVD or LPCVD film. Don't want to create a step

A3: Reflectometer or ellipsometer

Q4: Measure films by e-beam evaporator or thermal evaporator, or metal films by sputter

A4: During deposition, cover the substrate partially to create a step. Measure with profilometer – Dektak (preferred) or optical profilometer – zygo

Q5: Measure films by ALD

A5: Ellipsometer

Q6: Need a beautiful 3D picture for publication

A6: optical profilometer –zygo or AFM depending the scan area. Try to fit your sample in.

Contact me: ying.jia@northwestern.edu

General NUFAB contact: nufab@northwestern.edu

