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Outline

» Principles of EDS and EELS

» Key points/parameters for EDS
» Application of EDS

» Key points/parameters for EELS

» Application of EELS
Quantification methods of EDS and EELS will

be covered in future lectures.
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Principles of EDS and EELS

Electron Matter Interaction

u Morphology E-beam

Auger Electrons Secondary Electrons

- Structure e

SuUlliaoe atulmne Lolrmipusinonr

. Chemistry
Characteristic X-Ray

Continuum X-Ray
Bremsstrahlung (Medical)

Sample
Inelastic Scattering _ __.—-—-—-: ‘ "‘-_--... Elastic Scattering

PO sladles (LY |
SUTNTA ol Lo C el

T N UANCE S H. NE Soft and Hybrid Nanotechnology Nﬂrthwestern

(& Atamibs a )
1 T imental Centsr

; e i MATERIALS RESEARCH SCIENCE
Experimental Resource RS AND ENGINEERING CENTER EXPLORING INNER SPACE



@—
Key points/parameters for EDS

» X-ray emission

* Anionized atom does not have to lose energy by £, O
giving off a characteristic X-ray but can emit an Auger | Incoming
) Continuum states electron.
electron instead.
* Fluorescence yield (w ) describes the probability of X-
. . Atomic EL3 ® O ® OL
ray versus Auger emission. enerey  Ej , ® o ! L
levels EL[ . . i Y
-z (for K shell, a ~10°) ; /Ch acteristi
- a+Z4 ) EK . O K haracteristic
X-rays
For C-K Edge, w 10_3; Nucleus ® Energy-loss
electrons

For Ge-K edge, w ~ 0.5;

That’s why EDS is not the best way to analyze the light elements such as Li, Be and B.
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Presenter
Presentation Notes
The ionization process. An inner (K) shell electron is ejected from the atom by a high-energy electron. When the hole in the K shell is filled by an electron from the L shell, characteristic (Ka) X-ray emission occurs. The beam electron loses energy but continues on through the specimen.


» Bremsstrahlung X-rays (braking radiation)

: : : X-ray

* When electrons interact with the Coulomb field of intensity
nucleus, there will be substantial momentum

changes and it may emit an X-ray during this
process.

* The approximate expression used is:
N(E) = KZ(E,—E)

N(E): number of bremsstrahlung photons with
energy E;

Z: atomic number; K: Kramers’ constant;
X-ray energy
EO: electron energy

Bremsstrahlung X-rays contributes to the continuum background.
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Presenter
Presentation Notes
The bremsstrahlung X-ray intensity as a function of energy. The generated intensity increases rapidly with decreasing Xray energy but at energies < 2 keV the bremsstrahlung is absorbed in the specimen and in any detector being used so the observed intensity in the detected spectrum drops rapidly to zero. E0 is the energy of the electrons that cause the X-ray emission. Two families of characteristic lines at specific energies are also shown superimposed on the bremsstrahlung.


» Energy resolution (~110—140 eV) Very low and major limitation

5x10%

R - (Pz + Iz + X2)1/2 | [I‘I]El)( ,*/\
C _ /ﬁ \\'\
.ounts \
P: Full width at half maximum (FWHM) of a randomized ‘ f,/' \
electronic-pulse generator; 2.5“04__113“ | 140 ev_\
: /1‘-FWHM -»l\\
X: FWHM-equivalent attributable to detector leakage - “ \
current and incomplete charge collection; | 7, ‘7 PV
- —_— 250 eV
0 10 T T T L '\_'__I i
I: Intrinsic line width of the detector 3.6 >.8 00 Ereray (kev)

| = 2.35%(F*e*E)Y/2 . . .
_ o , Estimate the energy resolution of Si detector:
(F: Fano factor of the distribution of X-ray counts from . ... me there is no leakage, and the

Poisson statistics; €: the energy to create an electron- electronics produce no noise (P=X=0)

hole pair in detector; E: the energy of the X-ray line.) * F=0.1;e=3.8eV; for MnKa line, E=5.9 keV
« R=I=111eV
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> Spatial resolution (_Beam 3

The spatial resolution (R) of EDS is governed by the beam-specimen
interaction volume, which is a function of the incident-beam diameter SEg e
(d,) and the beam spreading (b). \

R= d+Rzmax : Rmax — (bz + d?)l/z; b =8x 1012 Eio*Nvl/Z* t3/2 R

Z: atomic number; '

Ey: incident electron energy in keV

N?: number of atom/m?3 P

t: foil thickness / \
{;:;ﬁem 4 (\Ijlcrl'acc L'lﬁem i Inuz:rl‘ai:_c/‘W #Lr:;i]iem

de=(dg +d3 + dj)?

d,: beam spread due to gun
d.: beam spread due to spherical aberration
d4: beam spread due to diffraction limitation
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Presenter
Presentation Notes
Schematic diagram of how the incident beam size and the beam spreading combine to degrade the exit-probe diameter to Rmax, thus defining R.

Monte Carlo simulation of electron trajectories across an interface between two metals of different Z, in which the scattering is very different. Note the rapid increase in the electron scattering in the higher Z region and therefore, X-rays would come from larger regions, thus lowering the local spatial resolution.


» Time constant (t) Usually using a shortest t to maximize the count rate

e T(~5-100 pus) is the time allowed for the analog processor to evaluate the magnitude of the
charge pulse.

* Shorter t will give a larger counting rate but will give a greater error in assignment of a specific
energy to the pulse (poorer resolution).

> Dead time
 Dead timeis when the detector is not counting X-rays but processing the previous photon.

output count rate (Rout) clock time —live time

. —= )*100% = ( : )*100%
input count rate (Rin) clock time
Live time is when the detector is ready to detect an X-ray and not processing any signal;

Dead time in % = ( 1-

* Excess of 50-60% indicating the detector is saturated with X-rays and collection becomes
increase inefficient. You should find thinner area and reduce the beam current.
* Less than 3% indicating the X-ray signal is not enough. This is the normal case for TEM sample.
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» Collection angle (Q) The larger the better.

. Axcosd .
 Solid angle Q= - (usua”y <0.5 Sr) Incident beam
S

A: the active area of the detector (30-100 mm?);

0: angle between the normal to detector face and a line
from detector to specimen; (normally, 6=0)

S: distance from the analysis point to detector face;

Upper objective

Be window pole piece

— Desired X-ray
collection angle €2

Specimen
> T k ff I II 150 CD[“!T‘IH%DI‘ .l-" ﬂ
ake-off angle (ot usually ) / / Lower objective
Transmitted pole piece

Undesired electrons
- . . X-ray
» Detector position was fixed. You can only change this collection angle. ‘/
slightly by tilting your sample
e Sample tilt can reduce P/B (peak/background) ratio and
increase spurious effects
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Common artifacts from EDS detector
e Siescape peak (signal detection artifact)
Detector is not a perfect sink. Incoming photon with energy E is not transformed into electron-
hole pairs but fluoresces a Si Ka X-ray with a 1.74k eV energy.
* Internal fluorescence peak (signal detection artifact)
Incoming photons fluoresce atoms in the dead layer of the detector and result in Si Ka peak
 Sum peak (signal processing artifact)
Sum peak occurs when the count rate exceeds the electronics’ ability to discriminate all the
individual pulses and so-called ‘pulse pile-up’. Reduce the dead time!!

Counts Counts ] Counts — Mg K,
1 SiK Mg K sum peak
4x10%] 8x103- -
«—1.74 keV—>
|
3x10%] 6x10° \
3 7
2x10 CuK 4x10°- Mg Kg
€8C
IxID-‘-% 2x10% 0K
CuK o CukK ﬁ
0 — 1T T T 0 ' T d T T T T T T T T T T T T T T
5 6 7 8 9 0.0 0.5 1.0 1.5 2.0 2.5 0 1 2 3 4 5

Energy (keV)
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Presenter
Presentation Notes
The escape peak in a spectrum from pure Cu, 1.74 keV below the Cu Ka peak. The intense Ka peak is truncated in the display because it is 50–100 more intense than the escape peak.

The Si internal fluorescence peak in a spectrum from pure carbon obtained with a Be-window Si(Li) detector. The ideal spectrum is fitted as a continuous line that only shows the Si absorption edge.

The Mg K sum (coincidence) peak occurs at twice the Mg Ka peak in this spectrum from a bulk specimen of (oxidized) pure Mg. The sum peak decreases change rapidly with decreasing dead times; upper trace 70%, middle trace 47%, lower trace 14% dead time. The sum-peak artifact is close to the background intensity at 14% dead time.



System X-rays [ncident beam

Upper :
. pole
* Cuis everywhere piece ?{pmmus )
: : y rays

e Remember to remove the objective aperture
before taking EDS signa e s e
* Operate as close to zero tilt as possible

1103 IS 4,
CrK a CrK B :
Counls_ : Specimen-
- eenerated
EES::;E::T'/ / continuum
) CuK spurious
5x102 i X-rays Scattered
CrK o electrons
1 SiK esc Back-scattered
— | —
1 u CuK B .
" || ower
e, pole
00 2 I R piece
Energy (keV) Direct electron beam
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Presenter
Presentation Notes
Cu peaks in a spectrum from a thin Cr film on a Cu grid. Although the beam was many micrometers from the grid, Cu X-rays are excited by electron scatter from within the specimen, and their intensity generally increases with specimen tilt. The Cr escape peak and the Si internal-fluorescence peaks are also visible.


Coherent Bremsstrahlung (CB)

Incident
* Continuous bremsstrahlung spectrum usually happens bulk ® beam o
polycrystalline materials by electrons with lower energy (< 30
e kV) CB X-rays
* Within TEM, for single crystalline specimens, CB likely will occur. ¢—cor- ‘ ®
_ 12.4P L
ECB - L(1—Bcos(90+a) . ,
Counts CuL  C.B. peaks ._ . . -
1200
B: electron velocity divided o]
by t.he velo-C|ty.of light ] . oo o o
L: Lattice spacing in the o esc
beam direction !
: take-off angle of the detector o W Lm
a: take-o g - CuK o o ¢ o
J CuKp
Q=i . o — et
0 2 -+ 6 8 10

Energy (keV)
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Presenter
Presentation Notes
CB peaks in a spectrum from pure Cu and (B) the schematic generation of CB when the beam passes close to a row of atoms in the specimen.


Application of EDS

Identification of the elements and distribution

-
L]
L ] L]
L] . '*.-.1.4.- - *AE |EI‘]FEI'
RN - o= A layer
L] .-
. I
] . .
Il
i " & & - z
| I Elements  distribution ¢ : ;::h
| along grain boundary AT 9 LaVacancy
within a low alloy steel. La-L
wt. % wt. %
original MSA processed
(D)
Zr“
COI'IIPOSIIIOI]
o

_ Revealing the La-rich and La-deficient within the solid
’ R electrolyte directly.

. 5
Distance (nm)
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Presenter
Presentation Notes
(A) STEM ADF image and (B) quantitative X-ray maps showing the segregation of trace amounts of Ni and Mo to grain boundaries in a low-alloy steel. (C) Applying MSA improves the quality of the maps. (D). Mapping the segregation of Zr to an interface in a Ni-base superalloy in a Cs-corrected STEM designed to give a 0.4-nm (FWTM) probe containing 0.5 nA. The Zr is present in the bulk alloy at 0.04 wt% and without MSA processing could not be mapped. The composition profiles show that the Zr is localized to <1 nm at two different positions on the interface.
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Key points/parameters for EELS

> Cross-section differential @ Auger o

electron

Vacuum

Cross-section differential of the inelastic scattering: Ec conprn
: onduction

Band
d°c  8a, ’R* df o ;
~270 *( )*
2 2 Valence

dQdE Emov 0 9 dE 1> Higher energy loss has smaller Band
o: Cross-section of the inelastic scattering; cross-section—Lower signal;
Q: solid angl.e; . 2> Lower incident electron energy has E,. O® ee L,
a,: Bohr radius, 0.53 A; : : o0 L,

larger cross-section of scattering— -
E: Electron loss energy . . .
m,: rest mass of electron; Higher signal o |
R: Rydberg energy, 13.6 eV, Incident
v: velocity of electrons clectron
0.: characteristic angle equaling approximately E/2E; (e-g., 100keV)
E,: Electron energy of the incident electrons Ex ® 0 K
0: scattering angle; Energy-loss
df/dE: Generalized Oscillator Strength clectron
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Presenter
Presentation Notes
The ionization process. An inner (K) shell electron is ejected from the atom by a high-energy electron. When the hole in the K shell is filled by an electron from the L shell, characteristic (Ka) X-ray emission occurs. The beam electron loses energy but continues on through the specimen.


» Energy-loss spectrum
e Zero loss peak (Very intense)

 Low loss regime containing the plasmon
peak is relatively intense.

* The ionization edges are relatively low
intensity compared to the background.

* Overall intensity drops rapidly with
increasing energy loss, reaching negligible
levels above ~2keV
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Presenter
Presentation Notes
The ionization process. An inner (K) shell electron is ejected from the atom by a high-energy electron. When the hole in the K shell is filled by an electron from the L shell, characteristic (Ka) X-ray emission occurs. The beam electron loses energy but continues on through the specimen.


; Energy resolution

* Higher energy resolution can give you more details.

* The electron gun usually dictates the ultimate energy resolution. (W: 3eV, LaB6: 1.5eV, Cold
FEG Gun: 0.35 eV)

* Monochromators can give you very high energy resolution but reduce the signals.

(A) (B)
Normalized e e q[,ity
[“Tr-‘"S”Y 4 / (arb. units) CM20
Fermi Monochromatic

Schottky FEG

tail \

Tunneling
tail

‘LTF20+m.;y\
XAS
calculated A

(i
o
el

-1 0 l 780 785 790 795
Energy loss (eV) Energy loss (eV)
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Presenter
Presentation Notes
(A) Typical cold FEG ZLP with and without monochromation.
Note that the ordinate is logarithmic so theFWHMis close to the
top of the peak. (B) Comparison of Co L2,3 spectra from: a Philips CM20
thermionic source, an FEI Tecnai TF20 with a cold FEG, a TF20 with a
monochromator, a synchrotron (X-ray absorption spectrum), and a calculated
spectrum using crystal-field theory. The improvement in resolution
with monochromation is apparent.


> Collection angle (B)

* For dedicated STEM

Cross-section differential of the inelastic
scattering:

d To EELS

Spectrometer
entrance
aperture

Specimen

Incident
beam

Soft and Hybrid Nanotechnology

Projector
Crossover

-}

Parallel collection

* The post column
spectrometer use the
signal (image/diffraction
V;ﬁﬂn pattern) on the back focal

screen plan of the projector lens
as its object.

= Entrance _
QX QY aperture Photodiode
SX SY I I array
align
] Beam tl'ﬂp TE CU‘U[ET
aperture
90° prism
El 1 : l l l E
f:Ctl'Ica Y - =
isolated . I I . =
drift-tube N

Quadrupole

- MRSEC

Transverse
/deﬂector YAG\

Electron Fiber-optic

lenses shield window
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Presenter
Presentation Notes
The ionization process. An inner (K) shell electron is ejected from the atom by a high-energy electron. When the hole in the K shell is filled by an electron from the L shell, characteristic (Ka) X-ray emission occurs. The beam electron loses energy but continues on through the specimen.


TEM-imaging mode (diffraction coupling)

o
If there is no objective aperture: W
B ::E Thin specimen
L
T, : maximum radius of the diffraction pattern in the focal plane of the B“““-—~:, £ 3mm
~ J11

spectrometer; typically ~ 5 um J
L: camera length; g | _22

L‘:—B \Objective

M i-lpE]‘[U['E
D: distance from the projector crossover to the recoding plan ~ 0.5 um

M: magnification of the image in the recording plan
If M=10000, D=0.5 um, (3 is around 100mrad.

Intermediate
len(es)

If there is an objective aperture:

N

> Projector lens

d Effective spectrometer
B =— (if d=30 um, f=3 mm, B is around 5 mrads) entrance aperture

2f in plane of screen _\

d: diameter of the objective aperture;
f: focal length of the objective lens;
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Presenter
Presentation Notes
The ionization process. An inner (K) shell electron is ejected from the atom by a high-energy electron. When the hole in the K shell is filled by an electron from the L shell, characteristic (Ka) X-ray emission occurs. The beam electron loses energy but continues on through the specimen.


 TEM/STEM diffraction mode (image coupling)

Thin specimen

Collection angle is mainly limited by the entrance aperture f=3mm

goters, 28 D, d -
2 b Dy L i

O,: Bragg angle

b: distance between 000 and hkl &

d¢r: effective aperture diameter

L: camera length on the recording plane

W (Objective aperture

_ > Intermediate lens(es)

d*xD =f i > Projector lens
of=

DA BFP of projector
D: distance from projector crossover to the recording plane (Varies) i i i liEacenitia]

D, : distance between the crossover and entrance aperture (typically Bx pumping aperture
610 mm for Gatan EELS)

Image plane
— ‘— —OCICCN— o

\ of projector
For example: ] degr Effective lens
: S[)CCII'OIHCICI'
{ : entrance
. Uagf aperture
If D=500 mm, L=800mm, GIF aperture 5mm, (3 is around 5mrads. e ipETTe
CBED 2B
hkl  disks 000
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» Characteristic angle and cut-off angle

e Characteristic angle

E . .
6~ (E: electron energy loss; E: incident electron energy)

0

* The characteristic scattering angles for core-loss electrons range from ~ 0.2 to 10 mrads.
*Collection angle B >2-3 6 ; A smaller B will cut off intensity in spectrum

e Cut-off angle (above which the scattering intensity is zero)

1
= (2*6)2
*Be careful to calculate this angle in radians but not in milliradians.

*The characteristic cut-off angles for core-loss electrons range from ~ 25 to 200 mrads;

*Too large B will include many unwanted electrons.
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Detection efficiency Incident
beam

o XES solid angle mc:?
* |onization-loss electrons are very strongly forward- contains |D~'f- 102

scattered. emitted characteristic X-rays
* Detection efficiency of EELS is very high (50-100%)

* Detection efficiency of EDS is usually inefficient.

Characteristic
X-ray —

100 Collection distribution
efficiency B
(in mrad) =59,
Thin specimen
10 F
30%
EELS solid angle np?
5 L contains most
energy-loss electrons
0.1
| I I
2 3
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Presenter
Presentation Notes
Comparison of the relative efficiencies of collection of EELS and XES. The forward-scattered energy-loss electrons are very efficiently collected with even a small EELS collection angle. In contrast, only a small fraction of the uniformly emitted (4p sr) characteristic X-rays is detected by the XEDS.

Variation in the collection efficiency of ionization-loss electrons as a function of energy loss and spectrometer collection angle. A 10 mrad collection angle will gather over 75% of all the incident-beam electrons that ionized C atoms and lost 285 eV.


@—

» Spatial resolution
* |n STEM/diffraction mode, the resolution is mainly
limited by the size of the probe.

 In TEM imaging mode, the selecting aperture (e.g., Auger trieident X-ray
spectrometer entrance aperture and its effective size at emission , emfﬁ’{j
the plane of the specimen) is a limited factor. = |
* Delocalization which is the ejection of an inner-shell (>
electron by the passage of a high-energy electron j
some distance from the atom is another limiting factor.  Specimen
]
Diameter d., contains 50% of the inelastic intensity. ;
déO — (eog_?;)z + (0_27\)2 o Angle-limiting
For energy loss E= 50 eV, d.,is around 1 nm. For E= 300eV, ?ﬂmre
d50i5 around 0.4 nm. I

Transmitted beam
to energy-loss

That is why it is very challengeable for getting the atomic spectrometer

resolution EELS map using light elements (e.g. C and B).
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Presenter
Presentation Notes
(A) Typical cold FEG ZLP with and without monochromation.
Note that the ordinate is logarithmic so theFWHMis close to the
top of the peak. (B) Comparison of Co L2,3 spectra from: a Philips CM20
thermionic source, an FEI Tecnai TF20 with a cold FEG, a TF20 with a
monochromator, a synchrotron (X-ray absorption spectrum), and a calculated
spectrum using crystal-field theory. The improvement in resolution
with monochromation is apparent.


@—
Application of EELS

* Identification of specific elements and concentration
* Identification of valence state of the elements.
* Determination of band gap, plasmon and other physics

related phenomenon...
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Presenter
Presentation Notes
(A) STEM ADF image and (B) quantitative X-ray maps showing the segregation of trace amounts of Ni and Mo to grain boundaries in a low-alloy steel. (C) Applying MSA improves the quality of the maps. (D). Mapping the segregation of Zr to an interface in a Ni-base superalloy in a Cs-corrected STEM designed to give a 0.4-nm (FWTM) probe containing 0.5 nA. The Zr is present in the bulk alloy at 0.04 wt% and without MSA processing could not be mapped. The composition profiles show that the Zr is localized to <1 nm at two different positions on the interface.


Thank you for your attention!

Q.&A.
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