

EXPLORING INNER SPACE

Introduction and Applications of the Atmosphere System

Kun He, PhD

EPIC-TEM Research Associate

www.nuance.northwestern.edu

19 Years of Excellence...

Outline

What is in-situ?

What is atmosphere system?

Instruments in EPIC

Instruction of atmosphere system

Application of atmosphere system

Questions

What is in-situ

In situ is a Latin phrase that translates literally to "on site" or "in position." It can mean "locally", "on site", "on the premises", or "in place" to describe where an event takes place and is used in many different contexts. /<u>Wikipedia</u>

In-situ (S)TEM

In situ transmission electron microscopy is a technique that allows researchers to study samples in real-time, under real-world conditions. ... For example, in situ TEM holders can produce heat conditions, apply atmospheric pressure, and allow for liquid microscopy study.

What is atmosphere system

In-situ gas TEM system

SPECIFICATIONS

Resolution	<1.5 Å (TEM dependent)	
Operating Pressure Range	1.0 Torr - 760.0 Torr	
Temperature	25° C - 1000°C	
Flow Rate	0.005 mL/min - 1.000 mL/min	
Gas Mixing	0.01% - 99.99% mixtures of up to 3 gases via volumetric blending	
Vapor Introduction	Software-controlled introduction of water, methanol, ethanol, hexane, naphtha, etc.	
System Cleaning	Automated pump and purge cycles with bake- out	
Holder Base Pressure	3.0 x 10 ⁻² Torr	
Holder Base Pressure (w/RGA)	<9.0 x 10 ⁻⁷ Torr	
EDS Capability	>3,000 CPS (Detector dependent)	
Software Control	Independent control of gas composition, flow rate, pressure, and temperature	
Data Synchronization	Pressure, temperature, time, gas composition, and flow rate with Clarity Echo for Gatan Microscopy Suite (GMS) version 1, 2, and 3*	
STEM Compatibility	Top chip heater available for STEM imaging	
Holder Assembly	Self-aligning using 1 gasket to complete in under 15 minutes	

From Protochips Co.

Northwestern

EXPLORING INNER SPACE

What is atmosphere system

Experimental Resource

Nanoscale Characterization Experimental Center

EXPLORING INNER SPACE

Instruments in EPIC

Liquid flow holder /Hummingbird

holder /Protochips

Wildfire heating holder/ DENS Solution

Instruction of atmosphere system

<image>

Atmosphere Holder

> Holder

➢ E-chips

Gas delivery system

Controller

Atmosphere holder

Assembled tip

A. lid screws

B. Lid

- C. small/large e-chip pair
- D. Gasket
- E. flex-circuit.

Back of the atmosphere holder showing the manual open/close valve.

Atmosphere E chips

Cross section of the Heating chip

Top viewing of the heating chip

Northwestern

Gas delivery system

A) 3 gas input ports
B,C) experiment tank 1 and experiment tank 2
D) vacuum tank
E) pressure control valves (11)
F) pressure sensor
G) gas entry module for control valves

Controller

Other accessories of gas system

• Vapor kit

A – Purge gas connection
B – Manifold connection
C – Syringe assembly port
D – Waste tubing port
E – "EXHAUST" used for
cleaning vapor kit (open to A)
F – "FILL" used when filling
manifold with vapor (open to
B)
G – Lever facing down is
"neutral" position (closed to A and B)

Other accessories of gas system

• RGA (Residual Gas Analysis)

The RGA assembly:

RGA

29May2019 - 3 RGA I	oaseline - whole system - overnigh	t pump		
Torr	Total Pressure	-	Analog Scan	May 29, 2019_02:38:48 PM X = 32.2 Y = 8.86e-011
9.8x10 ⁻⁷				
8.8x10 ⁻⁷				
7.8x10 ⁻⁷				
6.8x10 ⁻⁷				
5.8x10 ⁻⁷				
4.8x10 ⁻⁷				
3.8x10 ⁻⁷				
2.8x10 ⁻⁷				
1.8x10 ⁻⁷	H2	water		
8.0x10 ⁻⁸	- A	water	N2	
	Л			
-2.0x10 ⁻⁸ 1	3 5 7 9 11	13 15 17 19 21 :	23 25 27 29 31 33 35 37 mass	39 41 43 45 47 49 51 53 55 57 59 61 63 65

RGA

SHANE Soft and Hybrid Nanotechnology Experimental Resource

Northwestern EXPLORING INNER SPACE

Northwestern EXPLORING INNER SPACE

Cu NW in CO_2 gas at 200 °C.

Corrosion of AgCu in water vapor

Vapor On, Real Time HAADF | ABF

Collaborate with Jingshan Du from Chad Mirkin's group

Reduction of NiO on Al₂O₃ in H₂

Experimental Resource

 $NiO + H_2 \rightarrow Ni + H_2O$

Nanoscale Characterization Experimental Center

Collaborate with Dingdi Wang from Peter Stair group

Reduction of Au³⁺ @ Silica shell in H₂

The Au ions are distributed homogeneous initially, during the reduction process, it nucleated first, then aggregated to a large one finically. But because of the preparation process, after a long-time observation, there always has some heavy carbon contamination. The expansion of carbon can be observed obviously.

Collabate with Liban from Chad Mirkin group

Soft and Hybrid Nanotechnology Experimental Resource

X64

100x

In-situ steps:

- 1. Drop cast sample on chips
- 2. Flow Ar overnight to dry the sample and remove contaminations.
- 3. Increase Temp to 150-200C (150c),
- 4. Flow 4%H2 (balanced with Ar) for 1h. Pressure 1atm, temp ramps rate is 5C/min

Collabate with from Timur from Omar's group

Soft and Hybrid Nanotechnology Experimental Resource

Northwestern

Using K2 camera at low dose condition.

Thank you!

Any questions?

