ToF-SIMS or XPS ?

Xinqi Chen Keck-II

Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

Not ToF MS (laser, solution)

X-ray Photoelectron Spectroscopy (XPS)

Modes of SIMS

- Material removal
- Elemental analysis
- Profiling

- Ultra surface analysis
- Elemental or molecular analysis
- Analysis complete before significant fraction of molecules destroyed

Secondary Ion Sputtering Process

Atomic Emission

Small Molecule Emission

Definition of Static SIMS

When 'dose' of primaries is <u>low</u>: each ion strikes a *new* area of the surface = Static SIMS

TOF-SIMS analysis optimized in this regime

Exceeding Static SIMS

'Dose' of primaries is increased: significant chance of striking a previously sampled area, loss of high molecular weight information

Atomic surface density $\sim 10^{15}$ atoms/cm² Dose equivalent to $\sim 10^{13}$ -10¹⁵ atoms/cm²

7

STM Before & After Static SIMS

Si surface

Si surface exposed to 3 x 10^{12} ions/ cm²

H.J.W. Zandvliet et al. in SIMS VIII Proceedings

Basic Principles

- · Each pulse of primary ions creates a pulse of secondary ions
- Secondaries of different masses within a single 'cycle' arrive at the detector at different times according to the relation: K.E. $=\frac{1}{2}$ mv²

Modes of Operation

Surface Spectroscopy

Elemental and molecular information Unlimited mass range ppm/ppb sensitivity Mass resolution > 10,000

Spatial Dimension

Surface Imaging

Parallel mass detection Lateral resolution < 100 nm

Depth Profiling

Depth resolution < 1nm Thin layers from 1 nm to microns Parallel mass detection

depth

Positive spectrum of MoS₂ monolayer

Images of AI Metal Matrix Composite Heat Treatment: 500°C, 6 hr.

TOF-SIMS Imaging of PET-Biotin

Biotin CN⁻ m/z 26

Biotin C₁₀H₁₅N₂SO₂⁺ m/z 227

Depth profiling

Comparison of Analyzed Volumes

Dynamic SIMS (1 Element)

Boron Implant Depth Profile

Depth profile of a Cr/Ni multi-layer standard using a 2 nA, 15 kV Ga⁺ beam in the one-beam phase depth profiling mode. At this impact energy of 12 keV, the layers are not resolved beyond the second Ni layer.

Depth profile of a Cr/Ni multi-layer standard using a 2 nA, 5 kV Ga⁺ beam in the one-beam phase depth profiling mode. At this impact energy of 2 keV, the layers are well resolved throughout the entire structure.

Post analysis with raw data

Advantage of ToF-SIMS

- Detection of All Elements H, He, Li, etc.
- Isotopic Detection 2H, 3H, 18O, 13C, etc.
- Trace Sensitivity ppm to ppb range
- High Spatial Resolution
- –Typical Lateral Resolution < 100nm
- Parallel Detection of All Masses
- Detailed Molecular Information organic or inorganic
- Molecular Imaging
- 3D profiling
- Analysis of All Materials conductor, semiconductor, insulator

Disadvantages

- Secondary ion yields are often highly dependent on the matrix
- Secondary ion yields vary by more than six orders of magnitude across the elements
- Destructive
- Well-characterized reference standards that are as close as possible to the matrix of the samples of interest are needed for quantification
- Qualitative
- Data interpretation could be difficult.

Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

X-ray Photoelectron Spectroscopy (XPS)

What is X-ray Photoelectron Spectroscopy (XPS)?

- Surfaces are composed of atoms of different elements.
- Electrons surround the nucleus of an atom, occupying orbitals at different energies (e.g., 1s, 2s, 2p, ... etc.).
- In XPS, the sample surface is irradiated with X-rays from a photon source (typically Al Kα: 1486.6 eV).
- The X-rays cause electrons having lower binding energy to be ejected (photoelectrons) from the topmost surface (≤ 10 nm) of the sample material.
- The kinetic energy (KE) of the photoelectrons is measured by an analyzer to create an energy/intensity spectrum.
- The original binding energy (BE) of the photoelectrons is deduced from the measured kinetic energy and the X-ray photon energy by the following equation:

BE = hv - KE

- The photoelectron binding energy depends upon:
 - Element of origin.
 - Orbital from which electron was ejected.
 - Chemical state of the element.

High Resolution C 1s and O 1s XPS Spectra: PET

· High resolution chemical state results were consistent with the structure of PET.

Peak Fit for the Pd 3d XPS Spectrum: 10% Pd/Activated Carbon Catalyst

http://xps-simplified.com

Depth profiling by Ion Sputtering

Ar Ion

NUANCE Center

Exploring the inner space...

XPS Sputter-Cleaning and Depth Profiling

XPS sputter-cleaning and depth profiling

- How can we access deeper layers for analysis?
 - By progressively removing material from the surface and doing XPS analysis at each step.
 - Monatomic argon ion (Ar⁺) beam etching is the most common method.
 - XPS data is collected in the etch crater after each time period of ion sputtering.
 - Ar⁺ ion etching damages some inorganic and most organic/polymeric materials.
 - Recently, argon cluster ion sources have been developed for "soft" depth profiling of beam sensitive materials, which maintains the chemical state information in XPS.

XPS Depth Profile Analysis of a 10-Layer Low-E Glass Coating (Example-3)

Variation in Sampling Depth with Angle-Resolved XPS (ARXPS)

Angle-Resolved XPS (ARXPS): Variation of Collection Angle

- By changing the electron collection angle, the XPS information depth varies.
- This variation gives a measured intensity:

 $I = I^{\infty} \exp(-d/\lambda \cos\theta)$

- Electrons acquired at a grazing ("surface") angle come exclusively from a shallow region of the sample.
- Electrons acquired at a near-normal ("bulk") angle may come from deeper into the sample.
- Spectra acquired from thin films on substrates are affected by the collection angle.

Ultraviolet Photoelectron Spectroscopy (UPS)

XPS

UPS

NUANCE Center

Exploring the inner space...

Valence Electrons

Exploring the inner space...

electron intensity [cts]

34

Comparison table

	XPS	ToF-SIMS	SEM-EDX
In	X-ray	Ion beam such as Ga, Au cluster, or Bi cluster	Electron beam
out	Photoelectron	Secondary ion	X-ray
Sampling depth	Up to 10 nm	Up to 5 nm	0.5 to 3um
Information	Elemental analysis except for H and He Chemical state	Elemental analysis for all elements	Elemental analysis above carbon
Quantitative or qualitative	Quantitative ±5%	Semi-quantitative	Quantitative ±15%
Detection limit	0.1 at%	ppm to ppb	0.5 weight%
Elemental mapping spatial resolution	>3 um	<1 um	0.3 um
Analysis spot size	20 um to 900 um	1 um to 800 um	10 nm
Depth profiling	Yes	Yes	No
Insulating sample	Yes	Yes	Need Au coating
Data interpretation	Easy	Difficult	Easy
Surface damage	Non-destructive	Destructive	Non-destructive

Which instrument should be chosen for analysis?

- 1. Mapping MoS₂ flakes?
- 2. Check Fe²⁺ and Fe³⁺ ratio?
- 3. Concentration change along the depth?
- 4. Measure work function of a metal film?
- 5. Detect nitrogen or sulfur for monolayer molecular film?
- 6. Identify unknown spot?
- 7. Gel or solution sample?

Thank you!

